RESEARCH PROJECT

SYNTHESIS AND FUNCTIONALIZATION OF CHANNEL-LIKE MESOPOROUS SILICA MATERIALS TO IMPROVE ENZYMATIC CONVERSION OF CELLULOSE TO GLUCOSE

Submitted by: Robby Wijaya NRP: 5203012009 Luciana Trisna NRP: 5203012027

DEPARTMENT OF CHEMICAL ENGINEERING FACULTY OF ENGINEERING WIDYA MANDALA CATHOLIC UNIVERSITY SURABAYA

2015

The research entitled:

Synthesis and Functionalization of Channel-like Mesoporous Silica Materialsto Improve Enzymatic Conversion of Cellulose to Glucose Which was conducted and submitted by:

Name : Robby Wijaya NRP : 5203012009

has been approved and accepted as one of requirement for Bachelor of Engineering degree in Chemical Engineering Department, Faculty of Engineering, Widya Mandala Surabaya Catholic University by following supervisor/s and has been examined by the committees on 26th of May 2015 Surabaya, 12th of June 2015

Supervisor

Sandy Budi Hartono, Ph.D. 521,99,0401

Ery Susiany R, ST., MT. 521.98.0348

Co-Supervise

The Committees

Chairman

Anvaresti, ST, M.Eng. Sc. 521,99,0396

Member

Dean

525950198

ngineering Paculty

NIVERSIT

Sandy Budi Hartono, Ph.D. 521,99,0401

Member

Secretary

UKIN Surgadi Ismadii, MT, Ph.D. Ery Susiany R, ST., MT. Authorized by 521.93.0198

Ismadji, MT, Ph.P.

Head of Chemical Engineering Department

awati, ST. MT

ii

The research entitled:

Synthesis and Functionalization of Channel-like Mesoporous Silica Materialsto Improve Enzymatic Conversion of Cellulose to Glucose Which was conducted and submitted by:

Name : Luciana Trisna NRP : 5203012027

has been approved and accepted as one of requirement for **Bachelor of Engineering** degree in Chemical Engineering Department, Faculty of Engineering, Widya Mandala Surabaya Catholic University by following supervisor/s and has been examined by the committees on 26th of May 2015

Supervisor

Sandy Budi Hartono, Ph.D. 521.99.0401 Surabaya, 12th of June 2015 Co-Supervisor

Ery Susiany R, ST., MT. 521.98.0348

Secretary

The Committees

Chairman

Antaresti, ST, M.Eng. Sc. 521.99.0396

Member

Ir. Survadi Ismadii, MT, Ph.D. 521093.0198

Sandy Budi Hartono, Ph.D. 521,99,0401

Member

Ery Susiany R, ST., MT. 521.98.0348

Authorized by

Dean of Snameening Vaculty MIVERSI' madji, MT, Ph.D.

Head of Chemical Engineering Department POWZAN Wenny Irawad, ST, MT 521-01-0284

COPY RIGHT AGRREMENT

In order to support the development of science and technology, I am as the student of Widya Mandala Surabaya Catholic University:

Name	: Robby Wijaya
Student ID	: 5203012009

Agree to transfer the copyright of my thesis/paper:

Synthesis and Functionalization of Channel-like Mesoporous Silica Materials to Improve Enzymatic Conversion of Cellulose to Glucose

To be published in internet or other media (Digital Library of Widya Mandala Surabaya Catholic University) for academic purposes according to copyright law in Indonesia.

Surabaya, 12th of June 2015 Author TERA 7513722

Robby Wijaya 5203012009

COPY RIGHT AGRREMENT

In order to support the development of science and technology, I am as the student of Widya Mandala Surabaya Catholic University:

Name : Luciana Trisna Student ID : 5203012027

Agree to transfer the copyright of my thesis/paper:

Synthesis and Functionalization of Channel-like Mesoporous Silica Materials to Improve Enzymatic Conversion of Cellulose to Glucose

To be published in internet or other media (Digital Library of Widya Mandala Surabaya Catholic University) for academic purposes according to copyright law in Indonesia.

Surabaya, 12th of June 2015 Author 75137226

Luciana Trisna 5203012027

LETTER OF DECLARATION

I declare that this research was my own work and does not contain any material that belongs to the others, unless it was stated in the references. Should it is known that this research belongs to others. I aware and accept the consequences that this research cannot be used as a requirement to achieve a **Bachelor of Engineering** degree.

LETTER OF DECLARATION

I declare that this research was my own work and does not contain any material that belongs to the others, unless it was stated in the references. Should it is known that this research belongs to others. I aware and accept the consequences that this research cannot be used as a requirement to achieve a **Bachelor of Engineering** degree.

Surabaya, 12th of June 2015 Student, 05903ADE 75137226 Luciana Trisna

5203012027

CONTENTS

RESE	EARCH PROJECTi
LETI	ER OF APPROVALii
LETI	ER OF APPROVALiii
COPY	Y RIGHT AGREEMENTiv
COPY	Y RIGHT AGREEMENTv
LETI	TER OF DECLARATIONvi
LETT	TER OF DECLARATIONvii
CON	TENTSviii
TABI	LE OF FIGURESxi
LIST	OF TABLExii
PREF	ACExiii
ABST	TRACTxiv
CHA	PTER I1
I.1	Background1
I.2	Objective2
CHA	PTER II
II.1	Alternative Fuel
II.2	Cellulose Materials
II.3	Enzymatic Conversion of Cellulose to Glucose4
II.4	Porous Silica Materials as Enzyme Carriers
II.5	Mesoporous Silica Materials7
II.6	Mesoporous Silica Materials for Various Applications9
II.7	SBA-1510
II.8	Surface Functionalization
II.9	Previous Studies on Cellulase Immobilization within Mesoporous
Silica	Materials

II.10	Transmission Electron Microscopy	17
II.11	Nitrogen Adsorption	18
CHAI	PTER III	19
III.1	Chemicals	19
III.2	Instruments	19
III.3	Research Design	21
III.4	Variables	22
III.5	Research Methodology	23
III.6	Instrument	25
III.7	Research Schedule	26
CHAI	PTER IV	27
IV.1	Synthesis of Pure and Functionalized SBA-15	27
IV.2	Characterization of Pure and Functionalized SBA15	28
IV.3	Activity of Immobilized Enzyme	34
IV.4	Stability of Immobilized Enzyme	34
IV.5	Reusability of Immobilized Enzyme	34
CHAI	PTER V	36
CON	CLUSIONS AND RECOMMENDATION	36
V .1	Conclusions	36
V.2	Recommendation	36
REFE	RENCES	37
APPE	NDIX A	39
APPE	NDIX B	44

TABLE OF FIGURES

Figure II.1	Enzyme immobilization process [8]6
Figure II.2	The M41S materials: MCM-41; MCM-48; and MCM-50 [6].7
Figure II.3	The hexagonal structure of SBA-15 [16]8
Figure II.4	SBA-16 with spherical cages [13]9
Figure II.5	SEM image of the mesoporous sphere-like SBA-15 particles
and the TEM	image of single particle (inset) [11]11
Figure II.6	SEM images of (a) NH ₂ pr(5)-SBA-15; (b) NH ₂ pr(7.5)-SBA-
15; and (c) N	H ₂ pr(10)-SBA-15 [9]12
Figure II.7	Grafting for organic modification of mesoporous silica with
terminal orga	nosilanes of the type (R'O) ₃ SiR [4]14
Figure II.8	Co-condensation method for the organic modification of
mesoporous s	ilica [4]15
Figure IV.1	Images of Micron and Nano-sized SBA-1527
Figure IV.2	TEM Images of Micron-sized (left image) and Nano-sized
(right image)	
Figure IV.3	Micron and Nano SBA-15 Adsorption/Desorption Isotherm
Curves	
Figure IV.4	Micron and Nano SBA-15 BJH Desorption Curves30
Figure IV.5	FTIR Results for (A) Micron SBA-15 and (B) Nano-SBA-
15	
Figure IV.6	The Vinyl Group

LIST OF TABLE

Table IV. 1 Cellulase Activity for Functionalized SBA-15	32
Table IV. 2 Cellulase Activity for Pure SBA-15	
Table IV. 3 The Stability Data of Immobilized Cellulase	34
Table IV. 4 The Reusability Data of Immobilized Cellulase	35

PREFACE

The purpose of this research report is to present the research result that titled Synthesis and Functionalization of Channel-like Mesoporous Silica Materials to Improve Enzymatic Conversion of Cellulose to Glucose. The study of mesoporous material has been reported in a few years, but we focused on SBA-15 functionalization.

In doing this research, we have taught the new experiment about SBA-15 material, which is functionalized it with VTMS and modified to micron and nano-sized. We made a new idea by compared between micron and nano-sized to measure the activity, stability, and reusability.

We gratefully thank to Mr. Sandy Budi Hartono and Mrs. Ery Susiany, whose efforts helped our research and gave some advice about our experiment.

Surabaya, 12th June 2015

Author

ABSTRACT

Nowadays, the demand for energy is rising faster than anything, accelerating the exhaustion of fossil fuel, which is the most common form of energy source. Meanwhile, the amount of fossil fuels in nature are limited and will be used up at some point in the future, which is why we need another fuel source that is sustainable. Bio-ethanol is an alternate fuel, which can be made from thing that contains glucose. Glucose mostly contained in organic compounds, such as starches, and cellulose is the main compound of grains and edible roots.

Using edible material as the main source for bio-ethanol will worsen the food supply of the world. As an alternative source of bio-ethanol, waste product that is high in cellulose, such as by products from the processing of sugar cane, wood chips, and corn cobs. The conversion of cellulose to glucose will be needing an enzyme called cellulase. Despite its high potent, enzymatic reaction is less prefer compared to other processes. This is mainly due to the high production cost of enzymes. That is why every efforts to improve enzyme stability and reusability is important.

Nanoporous material, such as mesoporous silica, has the potential for making the enzyme reusable, but research about nanoporous material is still considered little despite of its capabilities. In this research, at first we focus on the synthesis a channel-like mesoporous silica materials with micron size (SBA-15) and nano size (IBN-4). The synthesized materials are functionalized with VTMS (vinyltrimethoxysilane). We will be using the mesoporous silica material to increase the interaction between the enzyme and the nanoporous silica. The synthesis of nanoporous silica will be using P123 as surfactants and TEOS as the source of silica, HCl will be used as solvent. VTMS will be used as organosilane source for silica surface modification. The effect of VTMS concentration on the affinity against enzyme will be studied.