turn) <mark>it</mark> in Turnitin Originality Report			
From Pi ID	<u>ass and Bioenergy</u> by Suryadi Ismadji i journal (Hippo-hippo) rocessed on 15-Feb-2018 17:45 WIB): 916388226 /ord Count: 8901	Similarity Index	Similarity by Source Internet Sources: Publications: Student Papers:	11% 15% 6%
ource	25:			
1	1% match (Internet from 29-May-2016) http://tesisenxarxa.net/bitstream/handle/ sequence=1	/10803/351959/Tesis%	20Magdalena%20Olk	ewicz.pdf?
2	1% match (publications) <u>Fedosov, S.N "Analysis of biodiesel co</u> nonlinear calibration curves", Journal of	nversion using thin lay Chromatography A, 2	<u>rer chromatography an 0110513</u>	<u>d</u>
3	1% match (Internet from 04-Nov-2017) http://kb.psu.ac.th/psukb/bitstream/2016	5/10702/1/409376.pdf		
4	< 1% match (Internet from 11-Nov-2014 http://pierre.fkit.hr/hdki/cabeq/pdf/27_1_			
5 <u>Chen</u>	< 1% match (publications) José M. Encinar, Juan F. González, Anto Oll. Variables Affecting the Yields and C nistry Research, 2005			
6	< 1% match (Internet from 07-Jul-2013) http://biofuel.org.uk/first-generation-biofu	<u>uel.html</u>		
7 <u>Mate</u>	< 1% match (publications) Kurniawan, A., "Utilization of rarasaponi Application for methylene blue removal t rials, 201106	n natural surfactant fo from aqueous effluent	r organo-bentonite pre , Microporous and Me	<u>paration:</u> soporous
8	< 1% match (publications) A.K. Azad, M.G. Rasul, M.M.K. Khan, S (Macadamia integrifolia)", Elsevier BV, 2		I From Queensland Bu	<u>sh Nut</u>
9	< 1% match (Internet from 22-Feb-2015 http://waset.org/publications/14692/stati surface-methodology	,	ation-through-multi-res	ponse-
10	< 1% match () http://www.restekcorp.com/restek/imag	jes/external/59583.pdf		
11	< 1% match (publications) Demirbas, Ayhan. "Energy from Waste and Technology, 2016.	Materials and Unconv	ventional Sources", Gre	een Energy
12 Deter	< 1% match (publications) <u>Ramyasree Uppada, Sita; Kumar Gupt</u> <u>Of Culture Parameters For Lipase Proc</u> <u>rgent Industry", International Journal of Ch</u>	duction From Lactocod	ccus lactis And Its Appl	
13	< 1% match (student papers from 12-A Submitted to Universiti Putra Malaysia	- ,		
14	< 1% match (publications) <u>Emmanuel Revellame. "Production of I</u> <u>Chemical Technology & Biotechnology</u>		<u>vated sludge", Journal</u>	of
13	 < 1% match (student papers from 12-A Submitted to Universiti Putra Malaysia < 1% match (publications) Emmanuel Revellame. "Production of I 	ug-2013) on 2013-08-12 biodiesel from wet acti		, Journal

16	
	< 1% match (Internet from 03-Aug-2017) http://iks.ukzn.ac.za/taxonomy/term/14?page=5
17	< 1% match (publications) Gangadharan, D "Response surface methodology for the optimization of alpha amylase production by Bacillus amyloliquefaciens", Bioresource Technology, 200807
18	< 1% match (Internet from 29-Aug-2016) http://docslide.us/documents/t01-s01.html
19	< 1% match (Internet from 01-Jul-2016) http://mdpi.com/1996-1073/2/2/362/htm
20	< 1% match (publications) Jar-Jin Lin, Yu-Wen Chen. "Production of biodiesel by transesterification of Jatropha oil with microwave heating", Journal of the Taiwan Institute of Chemical Engineers, 2017
21	< 1% match (student papers from 10-Sep-2015) Submitted to Indian Agricultural Research Institute on 2015-09-10
22	< 1% match (publications) C.Q. Liu. "Response surface methodology for optimizing the fermentation medium of alpha- galactosidase in solid-state fermentation", Letters in Applied Microbiology, 8/2007
23	< 1% match (Internet from 07-Nov-2017) http://epubs.scu.edu.au/cgi/viewcontent.cgi?article=1485&context=theses
24	< 1% match (publications) Qi, Juanjuan, Fenfen Zhu, Xiang Wei, Luyao Zhao, Yiqun Xiong, Xuemin Wu, and Fawei Yan. "Comparison of biodiesel production from sewage sludge obtained from the A2/O and MBR isses by in situ transesterification", Waste Management, 2016.
25 [.] odu	< 1% match (publications) <u>Urrutia, C., N. Sangaletti-Gerhard, M. Cea, A. Suazo, A. Aliberti, and R. Navia. "Two step</u> <u>esterification-transesterification process of wet greasy sewage sludge for biodiesel</u> <u>stion", Bioresource Technology, 2016.</u>
26	< 1% match (Internet from 29-Dec-2017) http://sphinxsai.com/2014/vol6pt4/5/(2568-2576)Jul-Aug14.pdf
27 rodu	< 1% match (publications) Jena, Umakanta, Alex T. McCurdy, Andrew Warren, Hailey Summers, Rhesa N. Ledbetter, S. Kent Hoekman, Lance C. Seefeldt, and Jason C. Quinn. "Oleaginous yeast platform for ing biofuels via co-solvent hydrothermal liquefaction", Biotechnology for Biofuels, 2015.
	< 1% match (Internet from 27-Mar-2016)
28	http://www.omicsonline.org/open-access/in-situ-transesterification-of-wet-activated-sludge- under-subcritical-conditions-2157-7463.1000182.pdf
	http://www.omicsonline.org/open-access/in-situ-transesterification-of-wet-activated-sludge-
28 29 30	http://www.omicsonline.org/open-access/in-situ-transesterification-of-wet-activated-sludge- under-subcritical-conditions-2157-7463.1000182.pdf < 1% match (publications) Siddiquee, M.N., "Lipid extraction and biodiesel production from municipal sewage sludges: A

33	< 1% match (student papers from 05-Oct-2017)	
33	Submitted to Australian Catholic University on 2017-10-05	
34	< 1% match (student papers from 15-Aug-2014)	
34	Submitted to Durban University of Technology on 2014-08-15	
35	< 1% match (student papers from 06-Oct-2017)	
	Submitted to Manchester Metropolitan University on 2017-10-06	
	< 1% match (Internet from 26-Dec-2017)	
36	https://d-nb.info/1120120608/34	
37	< 1% match (publications)	
31	Zhu, Fen Fen, Juan Juan Qi, Xiang Wei, Lu Yao Zhao, and Yi Qun Xiong. "In Situ	
Materia	<u>Transesterification of Sewage Sludge for Biodiesel Production", Applied Mechanics and</u> als, 2015.	
	<u>au, zo to.</u>	
	< 1% match (publications)	
38	Rakopoulos, C.D "Comparative performance and emissions study of a direct injection Diesel	
-	engine using blends of Diesel fuel with vegetable oils or bio-diesels of various origins", Energy	
Conve	rsion and Management, 200611	
	< 10/ match (publications)	
39	< 1% match (publications) Navia, R., and M. Mittelbach. "Could sewage sludge be considered a source of waste lipids	
	for biodiesel production?", Waste Management & Research, 2012.	
40	< 1% match (Internet from 05-Apr-2017)	
	http://nportal0.urv.cat:18080/fourrepo/rest/audit/digitalobjects/DS? eamId=DocumentPrincipal&label=Repositori+URV⟨=es&mime=application%2Fpdf&objectId=F	200/ 24240
Jalasli	eamid=bocument=incipai&iabei=Repositon+ORV&iang=es&mime=application%2rpdi&objectid=r	- <u>C%3A240</u>
	< 1% match (publications)	
41	Biofuels and Biorefineries, 2015.	
40	< 1% match (publications)	
42	Sawangkeaw, R "A review of laboratory-scale research on lipid conversion to biodiesel with	
	supercritical methanol (2001-2009)", The Journal of Supercritical Fluids, 201011	
43	< 1% match (student papers from 13-Jul-2017) Submitted to Unviersidad de Granada on 2017-07-13	
	< 1% match (Internet from 21-Dec-2017)	
44		
<u>nttp://re</u>	epository.its.ac.id/44003/1/A%20new%20approach%20in%20maximizing%20and%20direct%20util	ization%20of%20whole%20jatropha
45	< 1% match (publications)	
	G.Q. He. "Response surface methodology for optimizing the fermentation medium of Clostridium butyricum", Letters in Applied Microbiology, 10/2004	
	< 1% match (publications)	
46	de Almeida, Vanessa F., Pedro J. García-Moreno, Antonio Guadix, and Emilia M. Guadix.	
	"Biodiesel production from mixtures of waste fish oil, palm oil and waste frying oil:	
<u>Optimi</u>	zation of fuel properties", Fuel Processing Technology, 2015.	
47	< 1% match (publications)	
	Christoph Strauß, Armin Vetter, A. Von Felde. "Chapter 313 Biogas biogas Production biogas production and Energy Crops biogas energy crops", Springer Nature, 2012	
40	< 1% match (publications)	
48	Poljanek, Ida, and Bla Likozar. "Influence of Mass Transfer and Kinetics on Biodiesel	
	Production Process", Mass Transfer in Multiphase Systems and its Applications, 2011.	
49	< 1% match (student papers from 15-May-2013)	
	Submitted to University of the West Indies on 2013-05-15	

50 <1% match (publications) Atabani, A.E., "A comprehensive review on biodiesel as an alternative energy resource and its characteristics", Renewable and Sustainable Energy Reviews, 201205	
51 < 1% match (publications) Tom Burr. "Performance of Variable Selection Methods in Regression Using Variations of the Bayesian Information Criterion", Communications in Statistics - Simulation and Computation, 03/2008	
52 < 1% match (Internet from 05-Apr-2017) <u>http://nportal0.urv.cat:18080/fourrepo/rest/audit/digitalobjects/DS?</u> <u>datastreamId=DocumentPrincipal&label=Repositori+URV⟨=es&mime=application%2Fpdf&objectId=PC%3A12</u>	<u>10</u>
53 < 1% match (Internet from 29-Jul-2016) http://jehse.biomedcentral.com/articles/10.1186/s40201-015-0232-9	
54 < 1% match (publications)	
55 < 1% match (publications) Zhu, Fenfen, Luyao Zhao, Huimin Jiang, Zhaolong Zhang, Yiqun Xiong, Juanjuan Qi, and Jiawei Wang. "Comparison of the Lipid Content and Biodiesel Production from Municipal Sludge Using Three Extraction Methods", Energy & Fuels, 2014.	
56 < 1% match (publications)	
57 <a> 1% match (publications) Ianatul Khoiroh. "Isothermal Vapor-Liquid Equilibrium for Binary Mixtures of Polyoxyethylene 4-Octylphenyl Ether with Methanol, Ethanol, or Propan-2-ol", Journal of Chemical & Engineering Data, 04/14/2011	
58 < 1% match (publications) Olkiewicz, Magdalena, Carmen M. Torres, Laureano Jiménez, Josep Font, and Christophe Bengoa. "Scale-up and economic analysis of biodiesel production from municipal primary sewage sludge", Bioresource Technology, 2016.	
59 < 1% match (publications) Yanti, Asnida, Mohd Azlan Mohd Ishak, and Khudzir Ismail. "Production of Biodiesel via In- Situ Supercritical Methanol Transesterification", Biodiesel - Feedstocks and Processing Technologies, 2011.	
60 < 1% match (student papers from 16-Nov-2011) Submitted to National University of Singapore on 2011-11-16	
61 < 1% match (Internet from 20-Dec-2015) http://lait.dairy-journal.org/articles/lait/pdf/2003/02/L3207.pdf	
62 < 1% match (Internet from 05-Jul-2016) http://mdpi.com/2227-9717/4/1/2/htm	
63 < 1% match (Internet from 21-Sep-2017) http://uvadoc.uva.es/bitstream/10324/18034/1/Tesis1074-160720.pdf	
64 < 1% match (Internet from 02-Dec-2016) <u>http://dalspace.library.dal.ca/bitstream/handle/10222/45049/maqbool-rizwan-PhD-Biol-December-2013.pdf?isAllowed=y&sequence=5</u>	
65 < 1% match (publications) Sajjadi, Baharak, Abdul Aziz Abdul Raman, and Hamidreza Arandiyan. "A comprehensive review on properties of edible and non-edible vegetable oil-based biodiesel: Composition, specifications and prediction models", Renewable and Sustainable Energy Reviews, 2016.	

environ- mental concerns. In this study, low grade wastewater sludge originated from wastewater treatment unit of vegetable oil factory as a viable alternative lipid source 25for biodiesel production was evaluated. The lipid mass fraction of the dry and ash-free sludge was

12.44 \pm 0.87%, which mainly comprised of C16eC18 fatty acids. The in-situ trans- esterification process under subcritical water and methanol conditions was applied as a green pathway to convert lipids into fatty acid methyl esters (FAMEs). The reaction pa- rameters investigated were temperatures (155e215 C), pressures (5.5e6.5 MPa) and methanol to lipid mass ratios (1:1, 5:1 and 9:1). The highest FAME yield of 92.67 \pm 3.23% was obtained

15at 215 C, 6.5 MPa and methanol to lipid mass ratio of 5:1.

Statistical analysis based on response surface methodology in 3-factor-3-level central composite designed experiments and analysis of variance were applied to examine the relation between input parameters and the response and to locate the optimum condition. Results showed that 98%

22of the variability in the response could be adequately explained by the second-order polynomial

model. The optimum FAME yield (90.37%) was obtained at 215 C, 6.5 MPa and methanol to lipid mass ratio of 5.12:1. Experimental validation (N $\frac{1}{3}$ 3) demonstrated satisfactory agreement between the observed and predicted values with an error of at most 3.3%. ©

162014 Elsevier Ltd. All rights reserved. * Corresponding author. Tel.:

......

þ62 31 389 1264; fax: þ62 31 389 1267. ** Corresponding author. ***

57Corresponding author. Tel.: p886 2 2737 6612; fax: p886 2 2737 6644.

44E-mail addresses: alfin_kur @yahoo.com (A. Kurniawan),

yhju@mail.ntust.edu.tw (Y.-H. Ju),

aayucitra@yahoo.com (A. Ayucitra), suryadiismadji@yahoo.com (S. Ismadji).

33http://dx.doi.org/10.1016/j.biombioe. 2014.07 .005 0961-9534/© 2014 Elsevier Ltd. All rights reserved.

411. Introduction The development of sustainable biofuels is

vitally crucial to global transportation and many industrial operations to generate electricity and heat. Such today's concern is driven by long-term supply issue associated with fossil fuels and their environmental impacts due to the release of carbon di- oxide, SOx and NOx pollutants during fuel combustion. One of potential alternative and sustainable biofuels which have been extensively studied and now commercially produced is biodiesel. Although biodiesel produces less air pollutants and is fast becoming a currently recognized substitute and/or blending agent for petroleum diesel, yet it still possesses key limitations include a heavy price, life-cycle assessment and the necessity of a vast land to produce enough biofuel without threatening food supplies and biodiversity.

11There are a number of factors affecting high variable costs in the production of biodiesel, limiting the fuel's widespread use.

In this light, the cost of biodiesel feedstock is the most burdensome, which accounts for 70e85% of total cost of pro- duction [1]. Palm

35oil [2], soybean oil [3], corn oil [4], rapeseed oil [5], sunflower oil [6], sesame oil [7], rice bran oil [8]

6and a number of other food crops have all

6served as feedstock for biodiesel, however they all suffer from the same problems including threatening the food chain, increasing carbon emissions when planted outside traditional agricultural set- tings and intense growth requirements.

Animal fats such as beef tallow [9], poultry fat [10], fish oil [11] and pork lard [12] have been investigated to produce biodiesel. Although much of animal fats are not considered edible by humans and

65their cost is substantially lower than the cost of vegetable

oils, yet their applications can be challenging because they frequently contain contaminants (e.g., phospholipids and gums) that should be removed before the fuel is used in an engine and also animal fatbased biodiesel typically has higher viscosity and sulfur content. Therefore, it is necessary to gain a new perspective on the production of biodiesel by seeking an alternative feedstock, which is non-food crops and easily obtainable in large quantities. Recently, municipal waste- water sludge is being explored for its untapped potential as a cheap and readily available lipid

39feedstock for sustainable biodiesel production. The sewage sludge is a byproduct generated after wastewater treatment and

usually a blend of thickened primary and secondary sludges. This sludge con- tains considerable mass fraction of lipids (up to 30%) either as

29a composite organic matrix (oils, greases, sterols, fats and long-chain fatty acids) originated from direct adsorption of lipids in municipal and industrial

wastewater or from phos- pholipids

1in the cell membrane of microorganisms, their metabolites and by- products of cell lysis [13]. The

<u>.</u>....

conven- tional technology

58**to produce biodiesel from** sewage **sludge** is by a **two-step process** involving **lipid extraction** using organic **solvents**

and then alcoholysis of extracted lipids. However, this usual approach poses a great challenge for industrial practice. The lipid recovery process from sewage sludge is tedious and costly because it

11requires huge amounts of organic solvents and large vessels with stirring and heating systems.

Also, most of organic solvents used for extracting lipids are not environmentally acceptable. In addition, the alcoholysis either by esterification or transesterification using liquid or solid catalysts often creates limitations in the cata- lyst recovery, yield and purity of biodiesel and treatment of wastewater. Kwon et al. [14] had demonstrated a thermo- chemical approach to transform lipids to biodiesel employing a catalyst-free, continuous flow system. However, non- catalytic thermochemical process suffers from the drawback of intense energy consumption due to the use of high tem- peratures (350e500 C) although nearly complete conversion reaction is achieved within a short period of time.

4Subcritical water (SubCW), that is, pressurized water at temperatures above the boiling point at ambient pressure and below critical point (TC ¼ 374 C),

is considered as a unique and green reaction medium for various applications including catalytic/noncatalytic reactions, biomass trans- formation to chemicals and materials and extraction of bioactive compounds from natural matrices. Several

4relevant properties of SubCW as a reaction medium are miscibility, ionic

product, electrolytic solvent power, dielectric constant and transport properties

(e.g., viscosity, diffusivity and ion mobility).

The physicochemical properties of interest of SubCW

32can be tuned through changes in pressure and tem- perature. With the

increase of temperature, there is a marked and systematic decrease in

63permittivity, viscosity and surface tension while the diffusion rate increases [15]. In the extrac- tion of

lipids by SubCW, the process is feasible at mild tem- peratures (typically 150e200 C)

32due to reduced dielectric constant of water, making it capable to

extract weakly polar to non-polar compounds. A successful implementation of SubCW as a green alternative solvent to recover lipids from wet algae [16] and dewatered activated sludge [17] has been reported and the possibility of producing biodiesel

1 from wet activated sludge without any catalyst under subcritical water and methanol condition

has been investigated by Huynh et al. [18]. In their recent paper, dried activated sludge was used instead of wet activated sludge as the lipid feedstock and water was added prior to methanolysis. Drying of wet activated sludge is a time-consuming as well labor- and energy-intensive process and for large-scale operation, this process is not economically feasible due to large fuel con- sumption in drying machine or huge land area for sun drying process. To date, limited studies on the production of biodiesel from wet activated sludge can be found in literature. In most cases, transesterification is performed under catalytic action of acidic or base homogeneous/heterogeneous catalysts, either in single or two-step processes. In contrast to such method, the in-situ transesterification procedure under subcritical alcohol condition is an ongoing area of intense research. Therefore, the aims of this study are to evaluate

28in-situ transesterification of wet wastewater sludge to fatty esters under subcritical water and methanol conditions

.....

along with the influencing

42parameters (temperature, pressure and methanol to lipid mass ratio)

and to determine the optimum reaction condition by employing response surface methodo- logical approach (RSM)

46and analysis of variance (ANOVA). Several key properties of

biodiesel is also investigated and compared to ASTM D6751 standard.

552. Materials and methods 2.1. Materials Fresh wastewater sludge was

collected from a

vegetable oil wastewater treatment unit located at Surabaya city, East Java. Distilled water was obtained from a local supplier. Anhydrous methanol (99.8%) and n-hexane (95%) was supplied from Merck, Germany

while ultra pure N2 gas (99.9%) was supplied from a local company. The fatty acid methyl esters (FAMEs) reference standard mix (Supelco) consisting of C14eC22 fatty acids

53was purchased from Sigma Aldrich Co., Singapore and used without any further purification.

2.2. In-situ subcritical methanol transesterification The experimental setup of a lab-scale high pressure batch reactor in this work (150 cm3, temperature limit: 273e473 K, pressure range: 0e10 MPa) is shown in Fig. 1. The reactor was made of Type 316 stainless steel and equipped with an external heater, a pressure gauge, a Type K thermocouple and M8 screws for tightening the reactor with its cap. The reaction vessel was charged with a given quantity of wet sludge and methanol (methanol to sludge mass ratios of 1:1, 5:1 and 9:1). Here, mass ratio was used instead of molar ratio to represent methanol loading due to the difficulty in calculating exact molecular weight of the sludge containing numerous com- ponents. N2 was then flowed into the reactor to remove air and build a bit of pressure prior to heating. The reactor was heated at 20 K min 1 from room to desired temperatures (155e215 C) and kept at final temperatures for 12 h. To maintain an isothermal and isobaric condition, temperature was controlled by a PID-type controller with uncertainty of ±1 C and pressure was monitored in real time by a pressure gauge. During the reaction period, the mixture was magneti- cally stirred at a constant rate of 13.33 Hz. When final tem- perature was reached, the pressure inside the reaction vessel ranged between 5.5 and 6.5 MPa. After completion of

30the reaction, the reactor was immersed in a cold water

bath for immediate cooling and the vapor Fig. 1 e Schematic diagram of the subcritical reactor system: N2 cylinder (1); relief valve (2); electric heating element (3); RPM controller (4); magnetic bar (5); high- pressure reactor (6); release valve (7). mixture was vented to the condenser inlet. The condensate was collected in a conical flask and extracted with n-hexane. The liquid contents were placed in the separatory funnel and after addition of n-hexane and shaking; the mixture was allowed to settle for 24 h to ensure complete separation be- tween ester-rich (organic) and glycerol-rich (aqueous) phases. The aqueous phase (bottom phase) was removed and left in a separate container. The organic phase was evaporated in vacuum to remove n-hexane. The solid fraction was removed and a given amount of n-hexane was added to extract fatty esters and unreacted lipids. The extraction process was con- ducted in a stirred borosilicate cylindrical glass vessel for 2 h with a constant stirring rate of 13.33 Hz. The solid was removed using a Buchner filtering funnel. The retained solid was washed three times with 50 cm3 n-hexane. The removal of n-hexane was conducted in vacuum using a rotary evapo- rator flask and the mass of biodiesel (FAMEs) was weighed using an analytical balance (Mettler Toledo). 2.3. Analysis of FAME mass fraction The FAME mass fraction was assayed by gas chromatography, in a Shimadzu GC 2014

31equipped with a flame ionization detector (FID) and an Agilent DB -WAX capillary column (30 m length, 0.25 mm

i.d., 0.25 mm film thickness). Highly pure he- lium (99.9%)

27was used as the carrier gas at a linear velocity of 40 cm s 1. The injector temperature was set at 250 C

running

68in splitless mode and the detector temperature was kept at 300 C for the

duration of analysis. The oven temperature program was started at 50 C with a holding time of 2 min, then ramped

37to 250 C at 10 K min and held constant at 1 250 C for 8 min. The injection volume of the samples was 1

mm3.

 $54 \mbox{Calibration}$ of the instrument was conducted using a 10 -component FAMEs standard mix with

methyl heptadeca- noate as internal standard.

40All calibration curves were linear with a correlation coefficient of 0. 98 or better. Peaks of

FAMEs

61were identified by comparing retention time with those of FAMEs standard mix.

FAMEs not included in this standard were compared with the peaks of well-recognized materials under similar analytical conditions. The FAME mass fraction was determined by the following equation: P Fcð%Þ ¼ 100 AFAME Aint VintCint Aint m (1) P where Fc is the FAME mass fraction, AFAME is total peak area of FAMEs,Aint

3is the peak area of methyl heptadecanoate, Vint is the volume of methyl heptadecanoate internal standard solution added to sample (cm3), Cint is the concentration of methyl heptadecanoate internal standard solution (g cm 3) and m is the mass of sample (g). The

percent yields of FAMEs based on lipid mass fraction of the dry and ash-free sludge were calculated as follows: 100 mp Fc Yieldð%Þ ¼ ml (2) where mp is the mass of biodiesel (g), ml is the mass of lipids in the dry and ash-free sludge (g) and Fc is the FAME mass frac- tion obtained from Eq. (1). Thin-layer chromatography (TLC) was carried out for qualitative analysis of fatty esters, employing

2silica gel TLC plates (Polygram® Sil G) on polyester support

(20 cm 20 cm, 0.20 mm). The product was

1dissolved in n -hexane and spotted on a TLC plate which was then

developed using a solvent mixture of n -hexane, ethyl acetate and acetic acid

(volume ratios of 90:10:1) in a covered glass vessel

2until the solvent front reached the top of the plate. After a brief drying, the

plate was dipped in a water bath for 1e2 min. The

2wet plate was stained in 100 cm3 of 1% KMnO4 solution in 4% NaOH for approximately 20 s with constant agitation

for visualization [19]. Then,

2the stained plate was extensively washed with water (3e4 changes for 3e4 min) and dried.

The individual fractions as spots on the plate were identified by comparing Rf values with authentic standards of known masses. 2.4. Biodiesel fuel properties For commercial applications in the compressionignition en- gines, biodiesel should meet ASTM D6751 standard specifica- tion. The key properties of biodiesel were analyzed as per standard methods described in ASTM D613 for cetane num- ber, ASTM D93 for closed-cup flash point, ASTM D445 for ki- nematic viscosity, ASTM D1480 for relative density, ASTM D664 for acid number, ASTM D2500 for cloud point and ASTM D97 for pour point. 2.5. Statistical

71experimental design and optimization Statistical experimental design was applied to optimize the reaction conditions for

maximum FAME production. Here, a statistical method called response surface methodology (RSM) coupled with a 3-factor-3-level central composite design (CCD) was adopted to obtain maximum response by optimizing three independent variables namely temperature (C), pressure (MPa) and methanol to lipid mass ratio.

22Table 1 shows the coded and actual values of reaction parameters used in

the design of experiments. The selection of pressure, temperature and methanol to lipid mass ratio as reaction parameters to be optimized was based on the fact that these parameters are directly relevant to process economics and safety concerns. The experiments were conducted in random order and after finishing the experiments, a suitable mathe- matical model was developed for prediction of the response based on experimental factors. A 95% confidence level was applied for model development and analysis of variance (ANOVA). The analysis of variance was performed using Minitab software (Version 16.2.1) and the response surface plots were obtained using MatLab R2013b software. All ex- periments were repeated three times and the results are averaged. The central data point (0, 0, 0) was replicated five times. Table 1 e 3-factor-3-level experimental design. Parameters Coded values 1 0 1 Temperature (C) Pressure (MPa) Methanol to lipid mass ratio 155 185 5.5 6.0 1 5 215 6.5 9 3.

25Results and discussion 3.1. Characteristics of vegetable oil wastewater sludge The characteristics of

as-received (wet) vegetable oil waste- water sludge are given in Table 2. The dry and ash-free sludge contains quite significant amounts of lipid fractions ($12.44 \pm 0.87\%$) include triglycerides, diglycerides, mono-glycerides, sterols, phospholipids and free fatty acids. The fatty acids in the sludge based on gas chromatography anal- ysis consist of

8myristic acid (C14:0, 5.7%), palmitic acid (C16:0, 31.6%), palmitoleic acid (C16:1, 24.8%), stearic acid (C18:0, 10.4%), oleic acid (C18:1, 16.3%), linoleic acid (C18:2, 7.4%), eicosanoic /arachidic acid (C20:0, 2.

2%) and docosanoic/

8behenic acid (C22:0, 1. 6%). Similar fatty acid

compositions had

66been reported by Olkiewicz et al. [20] and Mondala et al. [21] for primary and

secondary sludges originated from munic- ipal wastewater treatment facilities (Table 3). The distribution of fatty acids is also in good agreement with sludges origi- nated from

3sunflower oil [24] and palm oil [25] industries, which mainly comprised of C16eC18 fatty acids

(~90%). High moisture content of the sludge is necessary to conduct in-situ transesterification process where fatty acids are simulta- neously extracted and transesterified to fatty esters. Compared to conventional process employing solid or liquid catalysts, water content should be taken into consideration because water can hydrolyze

69fats to form free fatty acids, which then form soap

and consequently decrease biodiesel yield and cause difficulty in product separation (for base- catalyzed transesterification). 3.2. Process optimization

12RSM is a collection of mathematical and statistical tech- niques for empirical model building and optimization, which examines the relation between one or more response pa- rameters and a set of experimental input parameters.

The design procedure of RSM to locate the optimum value of response (output parameter) from

12 a 9	set o	ofex	perimental	input	parameters
120 4	σειι		permentai	mput	parameters

can be divided into four steps [26]:

9(i) designing a series of experiments for reliable and adequate measurements of
the response of interest, (ii) constructing a mathematical model of the second
order response surface with best fittings, (iii) finding the optimal set of
experimental

Table 2 e The characteristics of as-received (wet) wastewater sludge. Parameters Mass fraction, % Water contenta Dry matters Lipidic fractionsa (dry basis) Wax and gum Oil components - Fatty acids - Acylglycerols - Unsaponifiable matters 85.51 ± 2.38 14.49 ± 2.38 10.78 ± 1.22 62.13 ± 4.61 37.87 ± 2.35 82.05 ± 3.18 10.73 ± 1.64 7.22 ± 0.51 a The values represent the averages of the results for three repli- cate runs. Table 3 e Distributions of fatty acids in various industrial wastewater sludges. Origin of sludge Type of sludge Fatty acids

23C12:0 C14:0 C15:0 C16:0 C16:1 C18:0 C18:1 C18:2 C20:0 C20: 1 C22:0 C24:0

Municipal WWTP [20,21] Primary Secondary Blended Stabilized tracea

56**e , trace e e , , , , , e trace e e** trace **e e , , , , , , , e**

18e e NRa NR NR , trace , , e NR NR NR e NR NR NR , NR NR NR e trace e e , e , trace , e NR e e e e NR NR e e , e

Fatty acids:

10C12:0 (lauric acid), C14:0 (myristic acid), C15:0 (pentadecanoic acid), C16:0 (palmitic acid), C16:1 (palmitoleic acid), C18:0 (stearic acid), C18:1 (oleic acid), C18:2 (linoleic acid), C20:0 (eicosanoic acid),

C20:1 (gadoleic acid), C22:0 (behenic acid), C24:0 (lignoceric acid). a Trace (concentration below 1%), NR (not reported), , (detected), (not detected or zero).

36parameters that give a maximum or minimum response and (iv) representing direct and interactive effects between input parameters and

response as 2D or 3D surface or contour plots. It is realized that the energy requirement of in-situ transesterification process under subcritical water and methanol conditions is higher compared to that of acidic- or base-catalyzed transesterification. However, the in-situ technique offers ancillary advantages than the conventional ones since this technique does not require any solid or liquid catalyst to achieve relatively high FAME yield and elimi- nating the need for pretreatment steps. In order to imple- ment this method for large-scale operation, optimization of reaction condition is important to give maximum benefit from an economic viewpoint. In this light, RSM was applied to obtain the optimum condition for production of fatty esters by integrating

42temperature, pressure and methanol to lipid mass ratio simultaneously. The

designed experiments based on 3-factor-3-level CCD model are presented in Table 4. The fitting model,

62as a function of independent variables, was expressed as a quadratic (secondorder) polynomial regression form using least squares analysis: X3 X3X3 Y ¼ k0 þ kiXi þ kijXiXj (3)

13**i**¹/₄**1 i**¹/₄**1 j**¹/₄ 1 where Y is the predicted **response**, k0, ki, kii and kij are the **regression coefficients for intercept, linear, quadratic and interaction terms, respectively** and **Xi and Xj are the coded** levels of **independent variables. The** second term **of**

Eq. (3) represents linear effect of single process variables while the cross-product term represents an interaction effect between two variables Xi and Xj. After developing the response surface plots, the multiple

64regression coefficients of the model was estimated using the method of least squares

at a significance level of 0.05

52and the results are listed in Table 5. As shown in Table 5, it is

evident that the main linear effects of temperature (T) and pressure (P) are significant factors toward FAME production. Results also suggested that the square interaction of methanol to lipid mass ratio (M2) and an inter- action effect between temperature and pressure (T*P) signifi- cantly affects FAME yield. The main linear effect of methanol to lipid mass ratio (M), square interaction of pressure (P2) and temperature (T2), interaction effects between pressure and methanol to lipid mass ratio (P*M) and temperature (T2), interaction effects between pressure and methanol to lipid mass ratio (P*M) and temperature and methanol to lipid mass ratio (T*M) are not significant toward the dependent variable (Y) therefore all these terms except the linear term of methanol to lipid mass ratio (M) and quadratic term of temperature (T2) could be removed from the model without affecting the accuracy of predictions. The variables M and T2 still preserved in the model because after elimination of the insignificant terms, the p-value of linear term M becomes approximately same to the a-level (0.05) thus methanol to lipid mass ratio has significance toward FAME yield. Simi- larly, the p-value of quadratic temperature term (T2) satisfies 95% confidence level. By inserting the values of significant regression coefficients into Eq. (3), the following second-order polynomial coded model for prediction of FAME yield is obtained: Yieldð%P ¼ 67:58 þ 9:89ðTP þ 5:12ðPP þ 1:64ðMP þ 4:41 T2 30:87 M2 þ 3:36ðT\$PP (4) The above coded model fits the data very well with coef- ficient of determination (R2) of 0.98. This indicates that 98% of

45**the variability in the response could be** adequately inter- preted **by the** developed **second-order polynomial prediction**

model. Additionally, all linear, guadratic and interaction terms in the model are significant at 95% confidence level (Table 5). The response surface plots of the interaction effects be- tween two independent variables are represented in Fig. 2aec. As displayed in Fig. 2a, the positive linear influence for both temperature and pressure indicates that FAME yield increases Table 4 e The designed experiments based on 3-factor-3-level central composite design. Run Input parameters P/MPa (X1) T/ C (X2) M (X3) Response (FAME yield, %) Experimental (N ¼ 3) Prediction 1 1 (5.5) 1 (215) 1 (9:1) 42.35 ± 2.28 44.17 2 0 (6.0) 0 (185) 0 (5:1) 67.92 ± 2.58 67.58 3 1 (6.5) 1 (215) 1 (1:1) 58.12 ± 4.33 57.85 4 1 (5.5) 1 (155) 1 (1:1) 27.77 ± 2.02 27.83 5 1 (6.5) 1 (155) 1 (9:1) 36.12 ± 0.89 34.63 6 0 (6.0) 0 (185) 0 (5:1) 68.15 ± 1.24 67.58 7 0 (6.0) 1 (155) 0 (5:1) 56.33 ± 3.65 62.10 8 0 (6.0) 0 (185) 0 (5:1) 67.32 ± 2.09 67.58 9 1 (6.5) 0 (185) 0 (5:1) 70.96 ± 4.12 72.70 10 0 (6.0) 0 (185) 1 (9:1) 37.12 ± 2.23 38.35 11 0 (6.0) 1 (215) 0 (5:1) 84.02 ± 4.54 81.88 12 0 (6.0) 0 (185) 1 (1:1) 32.67 ± 1.81 35.07 13 1 (5.5) 0 (185) 0 (5:1) 65.77 ± 2.15 62.46 14 1 (6.5) 0 (185) 1 (9:1) 40.38 ± 2.57 43.47 15 1 (6.5) 1 (155) 1 (1:1) 34.02 ± 1.12 31.35 16 0 (6.0) 0 (185) 0 (5:1) 68.25 ± 4.68 67.58 17 1 (5.5) 1 (215) 1 (1:1) 40.35 ± 2.54 40.89 18 1 (6.5) 1 (155) 0 (5:1) 58.24 ± 2.88 63.86 19 1 (6.5) 1 (215) 1 (9:1) 61.02 ± 3.63 61.13 20 1 (6.5) 1 (215) 0 (5:1) 92.67 ± 3.23 90.37 21 1 (6.5) 0 (185) 1 (1:1) 38.49 ± 3.28 40.19 22 0 (6.0) 0 (185) 0 (5:1) 67.44 ± 3.51 67.58 23 1 (5.5) 0 (185) 1 (1:1) 31.21 ± 1.65 29.95 24 0 (6.0) 1 (215) 1 (1:1) 43.72 ± 3.25 49.37 25 1 (5.5) 1 (155) 1 (9:1) 32.77 ± 1.53 31.11 26 0 (6.0) 1 (215) 1 (9:1) 47.11 ± 1.33 52.65 27 1 (5.5) 1 (215) 0 (5:1) 83.11 ± 1.92 73.40 28 0 (6.0) 1 (155) 1 (1:1) 30.11 ± 2.47 29.59 29 1 (5.5) 1 (155) 0 (5:1) 55.15 ± 3.08 60.34 30 1 (5.5) 0 (185) 1 (9:1) 35.21 ± 2.42 33.23 31 0 (6.0) 1 (155) 1 (9:1) 33.21 ± 1.79 32.87 as the level of both factors increases. It was observed that the curve line of pressure vs. temperature vs. FAME yield rose sharply by changing the levels of one independent variable from lowest (1) to highest (1) while keeping another inde- pendent variable in the highest level.

14It is expected that the increase in FAME yield would be greater for

temperature rather than pressure since the coded coefficient of Table 5 e Results of significance test on the multiple regression coefficients of the quadratic polynomial model for estimation of the response (coded form). No Full Partiala Term p-Value Coefficient p-Value Coefficient 1 Intercept

51**2 X1 3 X2 4 X3 5** X21 **6** X22 **7** X23 8 **X1*** X2 9 X2 ***X3** 10 **X1***

X3 0.00 67.78 0.00 5.12 0.00 9.89 0.09 1.65 0.07 1.65 0.35 3.46 0.00 31.82 0.01 3.36 0.78 0.28 0.80 0.25 0.00 67.58 0.00 5.12 0.00 9.89 0.05 1.65 0.01 e e 4.41 0.00 30.87 0.00 3.36 e e e a Partial means the insignificant terms (p-values > 0.05) of the model are eliminated. temperature is higher than that of pressure.

14This is also evident on the main effect plots, showing a steeper slope for

temperature than for pressure (Fig. 3). Response surface plots in Fig. 2b and c shows that FAME yield tends to have a maximum level for

14interaction effects between temperature and methanol to lipid mass ratio and

pressure and methanol to lipid mass ratio. Maximum FAME

17production was noticed in the middle levels of both factors while further increase in the factor levels resulted in a gradual decrease in yield.

A consistent result was verified on the main effect plot of methanol to lipid mass ratio in Fig. 3. It can be seen the contribution of each parameter investigated has signifi- cant effect on FAME yield in the order of temperature > pressure > methanol to lipid mass ratio. After constructing variable design, the optimal levels of process variables were determined. The

17optimal levels of process variables for 28in-situ transesterification of wet sludge under subcritical water and methanol conditions

are temperature of 215 C, pressure of 6.5 MPa and methanol to lipid mass ratio of 5.12:1. The predicted FAME yield under this condition was 90.37% with a model desirability of 0.97. To further assess the reliability of prediction, three replicate experiments were performed under the condition predicted by the model. Results show that FAME yield of 91.63 \pm 1.72% was obtained; giving an error of at most 3.3% and evidencing that the model prediction is highly reliable. Fig. 2 e 3D response surface plots of FAME yield, showing interaction between pressure and temperature (a), pressure and

24methanol to lipid mass ratio (b) and temperature and methanol to lipid mass ratio

(c). 3.3. Effect of methanol to lipid mass ratio on FAME yields Methanol is the most widely used alcoholic reactant

26in the production of methyl esters from oils or fats.

Stoichiometri- cally, three moles of methanol are required to produce

20three moles of methyl esters and one mole of glycerol. Since

transesterification is a reversible reaction, excess amounts of methanol are

required to shift the reaction to the right-hand side.

Excess methanol to lipid molar ratio, to a certain extent, seems favor the equilibrium position moving to the right-hand side. However, the addition of highly excess methanol has a tendency to give negative effects on FAME yields. According to the results obtained, the addition of methanol greater than five times the mass of wet sludge lowers biodiesel yield. A reasonable explanation is that a further increase in methanol amount

(9:1), aside from shifting the equilibrium to the right-hand side, would promote the extraction of more polar compounds in the sludge, such as phenols, pigments, carbohydrates and proteins [18], which retards the formation of fatty esters. Excess methanol in the reaction mixture would also interfere with glycerol separation due to increased solubility. Encinar et al. [27] showed

19there is a slight recombination of fatty esters and glycerol to monoglycerides because their concentration keeps increasing dur- ing the course of

reaction

when an excess alcohol is present. From the equilibrium point of view, excess glycerol concen- tration could

19drive the equilibrium back to the left, lowering FAME yields. In

addition, increasing methanol amount above the optimal value not only decreases yield but also raises cost for excess reactant recovery.

13.4. Effect of reaction temperature on FAME yields Reaction temperature is

the major factor influencing neutral lipids extraction from the sludge and transesterification pro- cesses. In the extraction of neutral lipids, temperature changes under isobaric condition vary the polarity and thus solvation properties of water. With increasing temperature, the dielectric constant of water drastically decreased due to weakening of hydrogen bonding between water molecules, allowing greater miscibility

between lipids and water [28]. This property of water also makes separation between lipid and water very easy when temperature is reduced to room temperature. The presence of water in the reaction system also initiates hydrolysis of triglycerides to form free fatty acids due to triglyceridesewater reactive system. As the hydrolysis proceeds, more free fatty acids are formed which increases the solubility of water in the oil-rich phase and thus the re- action rate. The resulting free fatty acids are esterified by methanol to form methyl esters and glycerol, increasing the product

and grycerol, increasing the product

70yield. The effect of reaction temperature on FAME yield is depicted in Fig.

4. The results show that increasing reaction temperature causes an increase in FAME yield. At room temperature,

34methanol and oil do not mix well and poor methanol and oil miscibility means the reaction rate is very slow.

From a kinetic viewpoint, an increase in FAME yield was attributed to enhanced reaction rate at higher temperatures as a result of increased solubility of methanol in the oil-rich phase and higher energy state of the molecules to undergo useful colli- sions. Also,

48the time for the mass transfer-controlled region is shortened as temperature is increased

[29]. The percent of FAME yields ranged between 34.02% and 92.67% at tempera- tures of 155e215 C. It is well-known that transesterification between triglycerides and methanol is a reversible and high activation energy reaction. Thus, increasing temperature would favor transesterification of triglycerides to diglycerides, diglycerides to monoglycerides and monoglycerides to methyl esters [29]. In addition, the formation of H3Op and OH ionic products from dissociation of water molecules increased with increasing temperature and these ionic products could act either as acid or base catalysts to promote hydrolysis and methanolysis reactions. Below the critical point of mixture, both H3Op and OH ionic products promote transesterification reaction under the same catalytic mechanisms using Bronsted acids and alkali catalysts [30].

59The increase in temperature also causes the polarity of methanol to decrease

by the same phenomenon of that water and it leads to increasing amount Fig. 3 e Main effect plots of reaction parameters investigated and the response at optimal levels (D e composite desirability; y e predicted response; d e desirability). of fatty acids that are soluble in the methanol phase. As the system continues to rise in temperature, the initial two-phase oil and methanol mixtures become more

homogeneous (single phase) thus facilitates the conversion of triglycerides to fatty esters. 3.5. Effect of reaction pressure on FAME yields Since transesterification and esterification reactions occur in the liquid phase, the pressure inside the reaction vessel should be sufficient to keep methanol and water both in the liquid state at all temperatures. The applied pressures of the in-situ transesterification process under subcritical water and methanol conditions are 5.5, 6.0 and 6.5 MPa. Generally speaking, pressure has only minor effects on the solvent strength of liquid water and methanol. By increasing pressure, the yields of FAME slightly increased as shown in Fig. 4. In the wastewater sludge, the lipids are attached to protein, mineral or carbohydrate structures [18]. When pressure and temper- ature of the system are increased to subcritical condition, water could enter more easily into the solid matrices where the lipids are trapped in the complex-bonded structures.

41Chen et al. [31] had also reported similar results in their

recent paper for extraction of lipids from wet Nannochloropsis sp. micro- algae paste. The ability of subcritical water to extract lipids was due to that the solubility parameter of water becomes closer to the solubility parameter of lipids at elevated pressure and temperature. Also, subcritical water provides enhanced mass-transfer properties of solutes compared to liquid water at room temperature and pressure [15]. In the vicinity of critical point of methanol at 239 C (TC) and 8.09 MPa (PC), methanol is highly compressible and the density is a strong function of pressure. The solubility of methanol in the oil-rich phase becomes higher at elevated pressure under critical temperature while only minor amount of oil present in the vapor methanol-rich phase. According to vaporeliquid phase equilibria data reported by Glisic et al. [32], the mole fraction of methanol in the liquid phase at 503 K and 3.0 MPa was 0.82 and this value increases to 0.98 when pres- sure is increased to 5.6 MPa. Meanwhile, the mole fraction of methanol in the vapor phase remains constant at values close to one, indicating pure methanol

30in the vapor phase [32]. The higher solubility of methanol in the oil-rich phase

with increasing pressure could overcome the interphase mass- transfer resistance arising from dissimilarity in size and po- larity between lipids and methanol. Thus, this phenomenon can enhance reaction rate of transesterification. The presence of vapor phase in the reaction mixture also contributes on the enhanced chemical kinetics at pressures and temperatures correspond to lower densities of subcritical methanol [32,33]. The highest FAME yield (92.67 \pm 3.23%)

24was obtained at a methanol to lipid mass ratio of 5 :1

and under condition in the vicinity of critical point of methanol (6.5 MPa and 215 C). 3.6.

according to ASTM D6751 specification and the results are given in Table 6.

67Fuel properties of biodiesel The fuel properties of biodiesel are

varied quite widely, depending upon the quantity and types of fatty acids in the lipid sources and also the refining method. In this regard, the quality of biodiesel produced from wastewater sludge was judged

21Several parameters directly depend upon the fatty ester composition

21are cetane number, oxidative stability, kinematic viscosity and cold-flow properties in form of the cloud point, pour point and cold filter plugging point

(CFPP) [34]. Density is one of the properties of biodiesel that Fig. 4 e Variation of FAME yields with reaction temperatures at different mass ratios of methanol to lipid (1:1, 5:1 and 9:1) and pressures (5.5, 6.0 and 6.5 MPa). can be used to indicate contamination by unwanted compo- nents such as residual alcohol, water and sediment (refers to any substance that is higher in density than biodiesel, such as unreacted monoglycerides and diglycerides). The presence of these contaminants, particularly water could make the fuel becomes rancid, corrode metal parts in fuel lines, accelerate fuel gelling in cold weather and reduce the heat and power of combustion. The density of biodiesel produced in this study is about 885 kg m 3. Although the density requirement is not specified in ASTM D6751, the value satisfies EN 14214 stan- dard. Kinematic viscosity is associated with the injection and atomization of the fuel

47**in the combustion chamber of the engine** and **is** also known **to** impact **the** engine life and the

rate of injector fouling. The sludge-based biodiesel has kinematic viscosity of 2.91e3.17 mm2 s 1, which is an acceptable vis- cosity range based on ASTM D6751 standard specification.

50The flash point of biodiesel samples is

generally over 150 C,

50which is much higher than ASTM specification

re- quires. High flash point of biodiesel confirms that this fuel is safer to handle than regular diesel fuel in high temperature environment. Cetane number indicates how well a fuel will combust inside a compression engine and is an important quality parameter for engine performance. Knothe [34] re- ported that cetane number of biodiesel depends upon the nature of fatty esters comprising the fuel and this combustion-related parameter increases with an increasing fatty acid carbon chain and increasing saturation of compo- nents. The cetane number of biodiesel samples in this study exceeds the minimum standard value specified in ASTM D6751, characterizing good ignition and combustion quality. Moreover, high cetane number minimizes soot (carbon) par- ticles and white smoke emissions from the engine during cold start operation. The cetane number obtained in this study agreed well with those of vegetable oils-based biodiesel such as peanut

38oil methyl ester [35], sunflower oil methyl ester [6], soybean oil methyl ester[3], cottonseed oil methyl ester [6] and rapeseed oil methyl ester

[6]. This result may be ascribed to similar distribution of fatty acids in the feedstock from which biodiesel fuel was made. Acid value is a crucial property for biodiesel quality check due to its relevancy with oxidative stability of the fuel during long-term storage. This parameter is commonly used to indicate free fatty acid content of finished biodiesel. During long-term storage, biodiesel can absorb water which can lead to the formation of free fatty acids from hydrolysis of tri- glycerides. Biodiesel with an acid value as KOH higher than 500 mg kg 1 has a greater tendency to corrode fuel tank, lin- ings and pipelines. The vegetable oil sludge methyl esters have acid values as KOH in the acceptable range of 280e410 mg kg 1. The cloud point is a measure of low- temperature operability of the fuel and is well-correlated with filter plugging point. This cold-flow property depends mostly on the fatty acid composition and also the type and quantity of impurities in the fuel. Biodiesel made from satu- rated fatty acid chains. From Table 6, it can be seen that vegetable oil sludge methyl esters which mainly comprised of methyl palmitate (29.8%), methyl palmitoleate (23.4%) and methyl oleate (15.4%) have a moderate cloud point about 8 C. The pour point, a

49temperature at which the fuel contains many agglomerated crystals and will no longer flow

was about 7 C. The cloud point and pour point of biodiesel can be further lowered by a winterization technique [36], using a branched-chain alcohol Table 6 e

46Fuel properties of biodiesel produced from vegetable oil

wastewater sludge. (D e density; KV e kinematic viscosity; FP e flash point; PP e pour point; CP e cloud point; CN e cetane number; AN e acid number). Samplea D @ 15 C (kg m 3) KV @ 40 C (mm2 s 1) FP (C) PP CP (C) (C) CN AN as KOH (mg kg 1) 155/1/5.5 885.7 2.97 163 7.2 8.2 52.8 342.5 185/1/5.5 886.4 2.96 155 7 1 8.0 51 7 378 3 215/1/5 5 886 2 3.04 158 6.8 7.6 52 7 322 6 155/5/5 5 886 2 3.08 161 6.9 7.8 52 6 335.2 185/5/5.5 885.9 3.02 157 7.1 7.9 51.7 364.1 215/5/5.5 885.9 3.06 156 7.0 8.1 51.1 391.2 155/9/5.5 884.9 2.94 165 6.8 8.0 54.0 285.4 185/9/5.5 885.0 2.92 162 7.2 7.8 53 7 314.8 215/9/5.5 884.9 2.91 165 7.1 8.0 53.5 348.6 155/1/6.0 885.9 2.98 160 6.9 7.7 52.4 363.0 185/1/6.0 886.4 2.97 155 7.0 7.9 51.6 412.7 215/1/6.0 886.1 3.02 157 6.8 8.2 52 5 357 8 155/5/6.0 885 8 3.07 159 6.7 8.1 53.0 310.6 185/5/6.0 885.7 3.02 157 7.2 7.9 51.9 282.5 215/5/6.0 885.9 3.07 154 6.9 7.8 51.0 347.2 155/9/6.0 884.9 2.97 170 6.6 7.6 53.9 354.4 185/9/6.0 885.1 2.99 165 7.0 8.1 53.4 339.1 215/9/6.0 884.8 2.93 162 7.1 8.0 53.5 307.3 155/1/6.5 885.9 2.98 158 6.9 7.7 52.4 344.9 185/1/6.5 886.5 3.03 157 6.6 7.6 51.8 305.8 215/1/6.5 886.1 3.02 160 6.8 7.9 52.5 338.5 155/5/6.5 886.3 3.17 163 6.7 7.5 53.1 319.8 185/5/6.5 885.7 3.02 160 7.1 7.7 51.9 340.2 215/5/6.5 885.9 3.10 156 6.9 7.6 51.0 371.3 155/9/6.5 885.1 2.95 165 6.9 8.1 53.9 356.6 185/9/6.5 885.2 3.00 168 7.2 8.3 53.7 323.5 215/9/6.5 884.9 2.96 172 7.0 8.0 53.8 388.1 ASTM D6751 na 1.9e6.0 min 93 report report >47 max 500 a Biodiesel samples codes: T (C)/methanol to lipid mass ratio/P (MPa). instead of methanol during transesterification [37], adding polymeric cold-flow improvers [38] or blending with other methyl esters having a lower cloud point or No.1/No.2 diesel fuels [39]. The first and

second authors also acknowledge partial support provided by the Directorate of Higher Education (DIKTI) through Student Creativity Research Program 2013. 4. Conclusions This study demonstrated the

5synthesis of biodiesel from low grade vegetable oil wastewater sludge

with lipid mass fraction of 12.44 \pm 0.87% (dry and ash-free basis) by a catalyst-free transesterification method. Effects of temperature and pres- sure show that increasing these parameters contributed positively on FAME yields. The highest FAME yield of 92.67 \pm 3.23% was obtained

15at 215 C, 6.5 MPa and methanol to lipid mass ratio of 5:1. The optimum reaction condition for in- situ subcritical methanol transesterification of

sludge to fatty esters was 215 C, 6.5 MPa and 5.12:1 of methanol to lipid mass ratio with a predicted FAME yield of 90.37%. The predicted FAME yield was in good agreement with experimental results under the optimum reaction condition. Acknowledgments The authors wish to acknowledge the support from Indonesia Toray Science Foundation through ITSF 2012 Research Grant. references [1] Haas MJ, Foglia TA. Alternate feed stocks and technologies for biodiesel production. In: Knothe G, Krahl J, Gerpen JV, editors. Biodiesel handbook. Urbana, IL: AOCS Press; 2005. pp. 54e61. [2] Bo X, Guomin X, Lingfeng C, Ruiping W, Lijing G. Transesterification of palm oil with methanol to biodiesel over a KF/Al2O3 heterogeneous base catalyst. Energy Fuels 2007;21(6):3109e12. [3] Tao G, Hua Z, Gao Z, Chen Y, Wang L, He Q, et al. Synthesis and catalytic activity of mesostructured KF/CaxAl2O(xb3) for the transesterification reaction to produce biodiesel. RSC Adv 2012;2(32):12337e45. [4] Mata TM, Sousa IRBG, Vieira SS, Caetano NS. Biodiesel production from corn oil via enzymatic catalysis with ethanol. Energy Fuels 2012;26(5):3034e41. [5] Hajek M, Skopal F, Capek L, Cernoch M, Kutalek P. Ethanolysis of rapeseed oil by KOH as homogeneous and heterogeneous catalyst supported on alumina and CaO. Energy 2012;48(1):392e7. [6] Rakopoulos CD, Antonopoulos KA, Rakopoulos DC, Hountalas DT, Giakoumis EG. Comparative performance and emissions study of a direct injection diesel engine using blends of diesel fuel with vegetable oils or bio-diesels or various origins. Energy Convers Manag 2006;47(18e19):3272e87. [7] Saydut A, Duz MZ, Kaya C, Kafadar AB, Hamamci C. Transesterified sesame (Sesamum indicum L.) seed oil as a biodiesel fuel. Bioresour Technol 2008;99(14):6656e60. [8] Sinha S, Agarwal AK, Garg S. Biodiesel development from rice bran oil: transesterification process optimization and fuel characterization. Energy Convers Manag 2008;49(5):1248e57. [9] Bhatti HN, Hanif MA, Qasim M, Ata-ur-Rehman. Biodiesel production from waste tallow. Fuel 2008;87(13e14):2961e6. [10] Shi W, Li J, He B, Yan F, Cui Z, Wu K, et al. Biodiesel production from waste chicken fat with low free fatty acids by an integrated catalytic process of composite membrane and sodium methoxide. Bioresour Technol 2013 July;139:316e22. [11] Fadhil AB, Dheyab MM, Saleh LA. Conversion of fish oil into biodiesel fuels via acid-base catalyzed transesterification. Energy Sources Part A 2014;36(14):1571e7. [12] Dias JM, Alvim-Ferraz MCM, Almeida MF. Production of biodiesel from acid waste lard. Bioresour Technol 2009;100(24):6355e61. [13] Siddiquee MN, Rohani S. Lipid extraction and biodiesel production from municipal sewage sludges: a review. Renew Sustain Energy Rev 2011;15(2):1067e72. [14] Kwon EE, Kim S, Jeon YJ, Yi H. Biodiesel production from sewage sludge: new paradigm for mining energy from municipal hazardous material. Environ Sci Technol 2012;46(18):10222e8. [15] Kronholm J, Hartonen K, Riekkola ML. Analytical extractions with water at elevated temperatures and pressures. Trends Anal Chem 2007;26(5):396e412. [16] Reddy HK, Muppaneni T, Sun Y, Li Y, Ponnusamy S, Patil PD, et al. Subcritical water extraction of lipids from wet algae for biodiesel production. Fuel 2014 October;133:73e81. [17] Huynh LH, Kasim NS, Ju YH. Extraction and analysis of neutral lipids from activated sludge with and without subcritical water pretreatment. Bioresour Technol 2010;101(22):8891e6. [18] Huynh LH, Nguyen PLT, Ho QP, Ju YH. Catalyst-free fatty acid methyl ester production from wet activated sludge under subcritical water and methanol condition. Bioresour Technol 2012 November;123:112e6. [19] Fedosov SN, Brask J, Xu X. Analysis of biodiesel conversion using thin layer chromatography and nonlinear calibration curves. J Chromatogr A 2011;1218(19):2785e92. [20] Olkiewicz M, Fortuny A, Stuber F, Fabregat A, Font J, Ch Bengoa. Evaluation of different sludges from WWTP as a potential source for biodiesel production. Procedia Eng 2012;42:634e43. [21] Mondala A, Liang K, Toghiani H, Hernandez R, French T. Biodiesel production by in situ transesterification of municipal primary and secondary sludges. Bioresour Technol 2009;100(3):1203e10. [22] Upadhyaya KL, Mondala A, Hernandez R, French T, Green M, McFarland L, et al. Biocrude production by activated sludge microbial cultures using pulp and paper wastewaters as fermentation substrate. Environ Technol 2013;34(13e16):2171e8. [23] Loughrin JH, Szogi AA. Free fatty acids and sterols in swine manure. J Environ Sci Health B 2006;41(1):31e42. [24] Saatci Y, Arslan EI, Konar V. Removal of total lipids and fatty acids from sunflower oil factory effluent by UASB reactor. Bioresour Technol 2003;87(3):269e72. [25] Hayyan A, MdZ Alam, Mirghani MES, Kabbashi NA, Hakimi NINM, Siran YM, et al. Reduction of high content of free fatty acid in sludge palm oil via acid catalyst for biodiesel production. Fuel Process Technol 2011;92(5):920e4. [26] Myers RH, Montgomery DC, Anderson-Cook CM. Response surface methodology: process and product optimization using designed experiments. 3rd ed. John Wiley & Sons; 2009. [27] Encinar JM, Gonzalez JF, Rodriguez-Reinares A. Biodiesel from used frying oil: variables affecting the yields and characteristics of the biodiesel. Ind Eng Chem Res 2005;44(15):5491e9. [28] Peterson AA, Vogel F, Lachance RP, Froling M, Antal Jr MJ, Tester JW. Thermochemical biofuel production in hydrothermal media: a review of sub- and supercritical water technologies. Energy Environ Sci 2008;1(1):32e65. [29] Noureddini H, Zhu D. Kinetics of transesterification

of soybean oil. J Am Chem Oil Soc 1997;74(11):1457e63. [30] Meher LC, Sagar DV, Naik SN. Technical aspects of biodiesel production by transesterification e a review. Renew Sustain Energy Rev 2006;10(3):248e68. [31] Chen M, Liu T, Chen X, Chen L, Zhang W, Wang J, et al. Subcritical co-solvents extraction of lipid from wet microalgae pastes of Nannochloropsis sp. Eur J Lipid Sci Technol 2012;114(2):205e12. [32] Glisic S, Montoya O, Orlovic A, Skala D. Vapor-liquid equilibria of triglyceridesmethanol mixtures and their influence on the biodiesel synthesis under supercritical conditions of methanol. J Serb Chem Soc 2007;72(1):13e27. [33] Bulgarevich DS, Otake K, Sako T, Sugeta T, Takebayashi Y, Kamizawa C, et al. Hydrogen bonding in supercritical methanol studied by infrared spectroscopy. J Chem Phys 2002;116(5):1995e2003. [34] Knothe G. "Designer" biodiesel: optimizing fatty ester composition to improve fuel properties. Energy Fuels 2008;22(2):1358e64. [35] Kaya C, Hamamci C, Baysal A, Akba O, Erdogan S, Saydut A. Methyl ester of peanut (Arachis hypogea L.) seed oil as a potential feedstock for biodiesel production. Renew Energy 2009;34(5):1257e60. [36] Kerschbaum S, Rinke G, Schubert K. Winterization of biodiesel by micro process engineering. Fuel 2008;87(12):2590e7. [37] Giraldo SY, Rios LA, Suarez N. Comparison of glycerol ketals, glycerol acetates and branched alcohol-derived fatty esters as cold flow improvers for palm biodiesel. Fuel 2013 June;108:709e14. [38] Wang J, Cao L, Han S. Effect of polymeric cold flow improvers on flow properties of biodiesel from waste cooking oil. Fuel 2014 January;117(Part A):876e81. [39] Serrano M, Oliveros R, Sanchez M, Moraschini A, Martinez M, Aracil J. Influence of blending vegetable oil methyl esters on biodiesel fuel properties: oxidative stability and cold flow properties. Energy 2014 February;65:109e15. biomass and bioenergy 69 (2014) 28e38 biomass and bioenergy 69 (2014) 28e38 29 30 biomass and bioenergy 69 (2014) 28e38 biomass and bioenergy 69 (2014) 28e38 31 32 biomass and bioenergy 69 (2014) 28e38 biomass and bioenergy 69 (2014) 28e38 33 34 biomass and bioenergy 69 (2014) 28e38 biomass and bioenergy 69 (2014) 28e38 35 36 biomass and bioenergy 69 (2014) 28e38 biomass and bioenergy 69 (2014) 28e38 37 38 biomass and bioenergy 69 (2014) 28e38