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Abstract. Semiring is an algebraic structure of (S,+,×), similar to a ring, but without the need
to add a reciprocal to each element. The forms (S,+) and (S,×) are semigroups that satisfy the
distributive law of multiplication and addition. In matrix theory, there is a term known as the
Kronecker product. This operation transforms two matrices into a larger matrix containing all
possible products of the entries in the two matrices. This Kronecker product has several properties
often used to solve the complex problems of linear algebra and its applications. The Kronecker
product is related to the Lyapunov equation of a linear system. Based on previous research in the
Lyapunov equation in conventional linear algebra, this paper will describe the characteristics of
the Lyapunov equation in a semiring linear system in terms of the Kronecker product.
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1. Introduction

A non-empty set G with a binary operation ∗ is known as Group if it has the following
properties: associative, a zero element of binary operations ∗, and every element, not a
zero element, has an inverse. Meanwhile, a non-empty set R with two binary operations,
particularly ∗ and ◦ is known as Ring if it has the following properties: (R, ∗) is a com-
mutative group, closed ◦, associative to binary operation ◦, and each binary operations
∗ and ◦ is distributive. If the Ring has the following properties: commutative to binary
operation ◦, it has a unit element of binary operation ◦, and every element, not a zero
element, has an inverse to binary operation ◦, it is called Field. Different algebraic systems
will appear if Group and Ring conditions are weakened, particularly Semigrup and Semir-
ing. If a few Group or Ring characteristics are removed, the algebraic structure formed is
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Semigrup, after which Semiring. One of the problems and applications often encountered
in mathematics is completing the Linear Equations System.

The Kronecker product is a binary matrix operator that maps two arbitrarily dimen-
sioned matrices into a larger matrix with a particular block structure ([13]). The Kronecker
product discussed by Zhou et al. (1996) and Whitcomb (2020) applies to matrices whose
elements are real numbers ([4],[12]). The set of real numbers is a field.

The linear equations system that researchers have developed is a system of linear equa-
tions over Field, which include real numbers R or complex numbers C ([9],[4]). In other
studies, the object of research is extended not to Field anymore but to commutative Ring
and linear equations system Commutative over ring have been discussed by Brown ([4]).
Likewise, assuming an extension from the Ring to Ring commutative does not generally
change the definition.

This paper presents the characteristics of the discrete Lyapunov equation of a matrix.
And the scope of the topic is in a system of linear equations in semiring in terms of the
Kronecker product. First, section 2 will review some basic facts about the semiring, the
Kronecker product of the matrix in semiring, and the Lyapunov equation of the matrix in
semiring. Then, in Section 3, we show a necessary or sufficient condition of the Lyapunov
equation in a linear system over semiring in terms of the Kronecker product.

2. Materials and literature review

2.1. Semiring and Matrices in Semiring

Definition 1. Semigroup S is an empty set that is equipped with an associative binary ∗
operation, that is x ∗ (y ∗ z) = (x ∗ y) ∗ z for every x, y, z ∈ S.

Poplin defines a semiring and its properties as follows([3],[10],[9],[12]).

Definition 2. Semiring is a non-empty set S with two binary operations, addition (+)
and multiplication (×), which have the following properties: commutative and associative
properties of + , associative property of ×, distributive property of × to +, the set S has
a zero element 0 ∈ S so that 0 + a = a + 0 = a and 0 × a = a × 0 = 0 for every a ∈ S.
This zero element is called the absorbent element (absorption), and the set S has a unit
element e, e× a = a× e = a for every a ∈ S.

The commutative and idempotent characteristics in Group and Ring also apply in
Semiring ([10]). Let Mn×1(S) be the set of all vectors n× 1 with the elements of semiring
S. And, let Mn×n(S) be the set of all n × n matrices with the elements of semiring S
([4],[2]). The + and × operation for matrices over semiring is defined as in Definition 3.

Definition 3. Let S semiring, a positive integer n, and Mn(S) is the set of all n × n
matrices over S. For every A,B ∈ Mn(S), + and × operations over semiring S are
defined C = A+B as cij = aij + bij and C = A×B as cij =

∑
l ail × blj.
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The semiring S has 0 as a zero element and 1 as an identity element, as in the matrix
of conventional algebra. We can form a zero matrix and an identity matrix based on the
zero element and the identity element ([3]). The zero matrix n × n over semiring S is
0n is defined as a matrix with all elements equal to the 0−element, that is (0n)ij = 0.
The identity matrix n × n over S is defined as the matrix with all elements equal to the

e−element, that is [In]ij =

{
e, if i = j
0, if i ̸= j

.

In semiring, the element of semiring has an inverse operation on + to determine a deter-
minant of a matrix in semiring S. Thus, a determinant of a matrix over a semiring S is
characterized by a permutation.

2.2. Kronecker Product

Kronecker’s product is related to the stack operator. The stack operator maps an
n×m matrix to a nm× 1 vector ([13]). The stack of the n×m matrix A is represented
by vec(A) which is a vector formed by stacking the columns of A on the vector nm× 1.

Example 1. Let A is a matrix with A =

[
a b
c d

]
, then its stack form is

vec(A) =


a
b
c
d

 .

If C is an n×m matrix comprising m column vectors c1, c2, c3, ..., cm, where each ci is
an n× 1 vector C = [c1, c2, c3, ..., cm]n×m, then

vec(C) =


c1
c2
...
cm


nm×1

.

Let X ∈ Mm×n(S), the form vec(X) denote the vector formed by stacking the columns
of X into one long vector:

vec(X) =
[
x11 x21 . . . xm1 x12 x22 . . . x1n x2n . . . xmn

]T
.

Kronecker product is an operation on two matrices that do not require size ([7], [8]).
The notation ⊗ denotes Kronecker products. With S semiring, let A ∈ Mm×n(S) and
B ∈ Mp×q(S) then the Kronecker product of A and B is defined as

A⊗B :=

 a11B . . . a1nB
...

. . .
...

am1B . . . amnB

 ∈ Mmp×nq(S).
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Furthermore, if A and B are square matrices with A ∈ Mn×n(S) and B ∈ Mm×m(S)
then the Kronecker sum of A and B is defined as

A⊕B := (A⊗ Im + In ⊗B) ∈ Mnm×nm(S).

Properties of Kronecker product is given the following theorem ([7], [13]).

Theorem 1. For A ∈ Mm×n(S) and B ∈ Mp×q(S) with S semiring, we have the following
properties: the Kronecker product is associative, not in general commutative, i.e., usually
(A⊗B) ̸= (B ⊗A), and transpose distributes over the Kronecker product (do not reverse
order) (A⊗B)T = AT ⊗BT .

Let A ∈ Mn×n(S) and B ∈ Mm×m(S), and λi with i = 1, 2, ..., n be the eigenvalues
of A and µi with i = 1, 2, ...,m be the eigenvalues of B. Then we have the following
properties: the eigenvalues of A ⊗ B are the mn numbers λiµj and the eigenvalues of
A⊕B = (A⊗Im)+(In⊗B) are the mn numbers λi+µj ,with i = 1, 2, ..., n, j = 1, 2, ...,m.

2.3. Discrete Lyapunov equation

The linear system is closely related to stability, which can be observed using the eigen-
value criterion of matrix A. Furthermore, the stability of the linear system is closely
related to the existence of a solution to the Lyapunov equation ([1]). Therefore, this
method can determine the stability of the system without knowing the solution to the
system. Lyapunov’s equation for a linear system over a field was given by Zhou ([6]). In
this study, the definition of the Lyapunov equation is given for a discrete linear system
on a semiring, adopting the meaning of the Lyapunov equation for a linear system on a
plane. The discrete Lyapunov equation for the linear system over semiring is defined as
follows ([11], [5]).

Definition 4. Given a matrix A,X,Q ∈ Mn(S). The Lyapunov equation for a linear
system over a semiring is defined as AXAT −X +Q = 0.

For linear systems over the field, the existence of solutions to the Lyapunov equations
is associated with asymptotic stability. That is, the system is asymptotically stable if a so-
lution to the Lyapunov equation exists. On the other hand, if the system is asymptotically
stable, a solution to the Lyapunov equation exists. ([1]).

3. Results and discussion

The problem of discrete Lyapunov equations over semirings is limited to orthogonal
matrices. These are because of the limited nature of the semiring.

Theorem 2. Let S is semiring. Then for any matrices A ∈ Mk×m(S), B ∈ Mn×l(S), and
X ∈ Mm×n(S), we have vec(AXB) = (BT ⊗A)vec(X).
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Proof. We have (AXB).k =
∑

j bjkAX.j =
(
b1kA b2kA . . . bnkA

)
and

X.1

X.2
...

X.n

 =
[
BT

.k ⊗A
]
vec(X) =

[
(BT )Tk. ⊗A

]
vec(X).

Furthermore, we conclude vec(AXB) = [BT ⊗ A]vec(X) since the transpose of the kth
column of B is the kth row of BT .

In the following, another property of the Kronecker product for matrix over a semiring
is given.

Theorem 3. Let A ∈ Mm×m(S), B ∈ Mn×n(S), and X ∈ Mm×n(S), we have vec(AX +
XB) = (BT ⊕A)vec(X).

Proof. From the definition of Kronecker sum, we have

(BT ⊕A)vec(X) = (BT ⊗ Im + In ⊗A)vec(X) = (BT ⊗ Im)vec(X) + (In ⊗A)vec(X).

According to Theorem 2, we have

(BT ⊕A)vec(X) = vec(ImXB) + vec(AXITn ) = vec(XB) + vec(AX).

Due to the limitations of semirings, the existence of discrete solutions to the Lyapunov
equations on semirings depends on the orthogonal matrix. This statement is given in the
following theorem.

Theorem 4. Let discrete Lyapunov equation over semiring AXAT − X + Q = 0 with
A ∈ Mn×n(S), Q ∈ Mn×n(S). For A is orthogonal matrice, there is a unique solution
X ∈ Mn×n(S) if and only if λi(A) + λj(−A) ̸= 0.

Proof. A matrice A is orthogonal if AT = A−1, hence we have AXAT −X+Q = 0 and
then (AXAT )A−XA = −QA. Because A is orthogonal, so we have AX −XA = −QA.
Therefore, AX+X(−A) = Q(−A) and vec(AX+X(−A)) = ((−A)T ⊕A)vec(X). Finally,
we have ((−A)T ⊕A)vec(X) = vec(−QA). Based on conditions, we have a unique solution
if and only if (−A)T ⊕A non-singular.

4. Conclusion

We have shown that the solutions of the discrete Lyapunov equations for matrices
over semirings are also valid and given in Theorem 3 and Theorem 4. Furthermore, this
condition can be used to find other characteristics of a linear system over a semiring.

sismi
Note
Please give an example. Example are given in the results and discussion.

sismi
Note
Because in conclusion it is written 
"Furthermore, this
condition can be used to find other characteristics of a linear system over a semiring", so an example  or explanation need to be added. 
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