Edited by Victor R. Preedy Ronald Ross Watson

NUTS AND SEEDS

in Health and Disease Prevention

NUTS AND SEEDS IN HEALTH AND DISEASE PREVENTION

This page intentionally left blank

NUTS AND SEEDS IN HEALTH AND DISEASE PREVENTION

SECOND EDITION

Edited by

VICTOR R. PREEDY RONALD ROSS WATSON

Academic Press is an imprint of Elsevier 125 London Wall, London EC2Y 5AS, United Kingdom 525 B Street, Suite 1650, San Diego, CA 92101, United States 50 Hampshire Street, 5th Floor, Cambridge, MA 02139, United States The Boulevard, Langford Lane, Kidlington, Oxford OX5 1GB, United Kingdom

Copyright © 2020 Elsevier Inc. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Details on how to seek permission, further information about the Publisher's permissions policies and our arrangements with organizations such as the Copyright Clearance Center and the Copyright Licensing Agency, can be found at our website: www.elsevier.com/permissions.

This book and the individual contributions contained in it are protected under copyright by the Publisher (other than as may be noted herein).

Notices

Knowledge and best practice in this field are constantly changing. As new research and experience broaden our understanding, changes in research methods, professional practices, or medical treatment may become necessary.

Practitioners and researchers must always rely on their own experience and knowledge in evaluating and using any information, methods, compounds, or experiments described herein. In using such information or methods they should be mindful of their own safety and the safety of others, including parties for whom they have a professional responsibility.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume any liability for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions, or ideas contained in the material herein.

Library of Congress Cataloging-in-Publication Data A catalog record for this book is available from the Library of Congress

British Library Cataloguing-in-Publication Data A catalogue record for this book is available from the British Library

ISBN: 978-0-12-818553-7

For information on all Academic Press publications visit our website at https://www.elsevier.com/books-and-journals

Publisher: Charlotte Cockle Acquisitions Editor: Megan Ball Editorial Project Manager: Lena Sparks Production Project Manager: Prem Kumar Kaliamoorthi Cover Designer: Christian Bilbow

Typeset by TNQ Technologies

Contents

Contributors xiii Preface xvii Acknowledgments xix

I Overview and General Themes

1. Rambutan (Nephelium lappaceum L.) Seed and Its Fat

Julio A. Solís-Fuentes, Frixia Galán-Méndez, María del Rosario Hernández-Medel, and María del Carmen Durán-de-Bazúa

List of Abbreviations 3 Introduction 4 Botanical Descriptions 4 Historical Cultivation and Usage 4 Present-Day Cultivation and Usage 5 Applications in Health Promotion and Disease Prevention 5 Nephelium lappaceum Seed Fat (RSF) Characteristics, Potential Food, and Therapeutic Uses 7 RSF and Its Potential Food Uses for Health Promotion 10 Adverse Effects and Reactions, Allergies, and Toxicity 11 Summary Points 11 References 12

2. Soursop Seed: Soursop (Annona muricata L.) Seed, Therapeutic, and Possible Food Potential Julio A. Solís-Fuentes, María del Rosario Hernández-Medel, and María del Carmen Durán-de-Bazúa

List of Abbreviations 15 Introduction 15 Botanical Descriptions 16 Historical Cultivation and Usage 16
Present-day Cultivation and Usage 16
Applications in Health Promotion and Disease Prevention 17
Annona muricata Seed and Its Possible Potential for Food Use 20
Adverse Effects and Reactions, Allergies, and Toxicity 23
Summary Points 23
References 24

3. Red Horse-Chestnut Seeds of Aesculus × Carnea: A New Way for Health and Food Design?

Cecilia Baraldi, Giorgia Foca, Laura Maletti, Andrea Marchetti, Fabrizio Roncaglia, Simona Sighinolfi, and Lorenzo Tassi

List of Abbreviations 27 Introduction 27 Botanical Descriptions 29 Historical Cultivation and Usage 29 Red Horse-Chestnuts: Chemical Composition and Characterization 31 Applications to Health Promotion and Disease Prevention 38 Adverse Effects and Reactions (Allergies and Toxicity) 41 Summary Points 41 Acknowledgments 42 References 42

4. The African Breadfruit (*Treculia africana*) Decne Plant Seed: A Potential Source of Essential Food and Medicinal Phytoconstituents Folake Lucy Oyetayo and Victor Olusegun Oyetayo

Introduction 45 Botanical Description, Cultivation, and Usage 45

Fruit Processing and Seed Production 46
Nutritional Value and Food Uses of *Treculia africana* Seed 47
Antinutritional Compositions of African Breadfruit Seed 47
Applications to Health Promotion and Disease Prevention 48
Future Perspectives 49
Acknowledgments 49
References 49

5. Perennial Horse Gram (Macrotyloma axillare) Seeds: Biotechnology Applications of Its Peptide and Protein Content – Bowman–Birk Inhibitors and Lectin

Marcos Aurélio de Santana, William de Castro Borges, Alessandra de Paula Carli, Larissa Lovatto Amorin, Alexandre Gonçalves Santos, Sonaly Cristine Leal, and Milton Hércules Guerra de Andrade

List of Abbreviations 51 Introduction 52 Botanical Description 52 Historical Cultivation and Usage 54 Present-Day Cultivation and Usage 54 Applications to Health Promotion and Disease Prevention — Biotechnology Applications of the Protein Seed Content 55 Adverse Effects and Reactions — Toxicity of *Macrotyloma axillare* 62 Summary Points 63 References 63

6. Biological Properties of a Partially Purified Component of Neem Oil: An Updated and Revised Work _{Gianfranco Risuleo}

Introduction 67 References 70

7. Bioactive Compounds of Oregano Seeds Havva Atar and Hatice Çölgeçen

List of Abbreviation 73 Introduction 73 Botanical Description 74 Historical Cultivation and Use 74
Current Cultivation and Use 74
Applications for Health Promotion and Disease Prevention 75
Adverse Effects and Reactions, Allergies, and Toxicity 75
Summary Points 76
References 76

8. Mango Seed: Mango (Mangifera indica L.) Seed and Its Fats

Julio A. Solís-Fuentes and María del Carmen Durán-de-Bazúa

List of Abbreviations 79 Introduction 79 Botanical Description 80 Historical Cultivation and Usage 80 Present-Day Cultivation and Usage 80 Applications to Health Promotion and Disease Prevention 81 Adverse Effects and Reactions, Allergies, and Toxicity 88 Summary Points 88 References 88

Π

Role of Seeds in Nutrition and Antioxidant Activities

9. Biological Functions of Soyasaponins: The Potential Use to Improve Zinc Nutrition Taiho Kambe and Masakazu Takahashi

List of Abbreviations 93 Introduction 93 Zinc Nutrition and Health 94 Zinc Absorption in the Small Intestine and Zinc Transporter, ZIP4 94 Soybean Soyasaponin Bb Increases ZIP4 Abundance at the Apical Membrane 96 Conclusion 99 Acknowledgment 99 References 100

vi

10. Purple Wheat (*Triticum* sp.) Seeds: Phenolic Composition and Antioxidant

Properties

Trust Beta, Yang Qiu, Qin Liu, Anders Borgen, and Franklin Brian Apea-Bah

List of Abbreviations 103 Introduction 104 Botanical Description 104 Historical Cultivation of Purple Wheat 105 Phenolic Compounds in Purple Wheat Seeds 105 Methods of Analyses for Phenolic Contents and Phenolic Composition of Purple Wheat Seeds 109 Total Phenolic Content and Phenolic Acid Composition 114 Total Anthocyanin Content and Anthocyanin Composition 116 Total Flavonoid Content and Proanthocyanidin Composition 117 Processing and Utilization of Purple Wheat 117 Applications to Health Promotion and Disease Prevention 119 Adverse Effects and Reactions (Allergies and Toxicity) 122 Summary Points and Future Perspectives 122 References 123

11. Protective Role of Nigella sativa and Thymoquinone in Oxidative Stress: A Review

Fatemeh Forouzanfar and Hossein Hosseinzadeh

Introduction 127 Free Radicals and Antioxidant Defense 127 Chemical Constituents 128 Traditional Medicine 128 Pharmacological Properties 128 In vitro Antioxidant Activity of Nigella sativa 129 In vivo Antioxidant Activity of Nigella sativa 130 Conclusion 140 References 141

12. Black Soybean Seed: Black Soybean Seed Antioxidant Capacity Ignasius Radix A.P. Jati

List of Abbreviations 147 Introduction 147 History, cultivation, and use 148
Anthocyanin 149
Antioxidant activity of black soybeans and black soybean—based food products 150
Health-promoting and disease-preventing effects of black soybean seed 152
Summary Points 156
References 156

13. Fenugreek (*Trigonella foenum*) Seeds in Health and Nutrition

Dilipkumar Pal and Souvik Mukherjee

Introduction 161 Scientific Classification 162 Morphology of Seed 162 Earlier Cultivation of Fenugreek Seed 162 Current Cultivation 162 Phytochemical Constituents 165 Therapeutic Potential of Fenugreekenugreek Seed 165 Adverse Effects 168 Conclusion 168 References 168

14. Tamarind (*Tamarindus indica*) Seeds in Health and Nutrition

Dilipkumar Pal and Souvik Mukherjee

List of Abbreviations 171 Introduction 171 Botanical Description 172 Vernacular Names 173 Taxonomical Classification 174 Historical Cultivation and Usage 174 Present-Day Cultivation and Usage 175 Nutritional Characterization of Tamarind Seeds 176 Phytochemicals Composition of Tamarind Seed 177 Biological Activities 177 Tamarind Seed Polysaccharide: a Promising Natural Excipient for Pharmaceuticals 178 Possible Adverse Effects and Reaction(s) 180 Summary of Key Point(s) 180 References 181

15. Sesame Seed in Controlling Human Health and Nutrition

Dilipkumar Pal, Phool Chandra, and Neetu Sachan

List of Abbreviations 183 Introduction 184 Plant Profile 184 Chemical Composition 187 Pharmacological Applications 193 Sesame Oil Protects Against Lead-Plus-Lipopolysaccharide-Induced Acute Hepatic Injury 204 Conclusions 206 References 206

16. Kancolla Seeds: High Nutritional Foods With Nutraceutical Properties Irene Dini

List of Abbreviations 211 Introduction 211 Nutritional Values of Kancolla Seeds 212 Phytochemical Composition of Kancolla Seeds 218 Triterpenoid Saponins 220 References 226

17. Health-promoting Potential and Nutritional Value of *Madhuca longifolia*

Seeds

Mohamed Fawzy Ramadan and Enas Mohamed Wagdi Abdel-Hamed

List of Abbreviations 229 Introduction 229 Botanical Description and Cultivation 230 Composition of M. *longifolia* Seeds and Seed Cake 230 M. *longifolia* Butter Content and Composition 231 Applications of M. *longifolia* Butter 233 Applications of M. *longifolia* Seeds in Health Promotion and Disease Prevention 233 Adverse Effects (Allergies and Toxicity) 235 Conclusion 235 References 236

III

Fungal Infections on Seeds and Nuts and Health

18. Ginkgo biloba Seeds: Antifungal and Lipid Transfer Proteins from Ginkgo biloba Nuts

Ken-ichi Hatano, Takuya Miyakawa, and Masaru Tanokura

Introduction 241 Lipid Transfer Proteins 243 Antifungal Proteins 248 Outlook 252 References 252

> 19. Mycotoxins in Nuts and Seeds Elisabete Yurie Sataque Ono, Melissa Tiemi Hirozawa, Aline Myuki Omori, Andressa Jacqueline de Oliveira, and Mario Augusto Ono

Introduction 255 Natural Occurrence 257 Effect of Heat Processing 260 Toxicological Effects in Humans 262 Summary Points 266 Acknowledgments 266 References 267

IV

Nuts and Seeds in Disease Prevention and Therapy

20. Lepidium sativum Seeds: Therapeutic Significance and Health-Promoting Potential

Mohamed Fawzy Ramadan and Hesham F. Oraby

List of Abbreviations 273 Introduction 273 Botanical Description and Cultivation 274

viii

Chemical Composition of Lepidium sativum Seeds 275
Amino Acids Profile 277
Seed Oil Composition 278
Edible Applications of Lepidium sativum 279
Applications of Lepidium sativum to Health Promotion and Disease Prevention 279
Application As An Excipient in Pharmaceutical Dosage Form 280
Therapeutic Applications 281
Adverse Effects (Allergies and Toxicity) 285
Conclusions 285
References 286

21. The Effects of Nuts on Metabolic Diseases and Disorders Mohammad Moradzad

List of Abbreviations 291 Introduction 291 Fats 292 Macrominerals and Micromineral 293 Phenolic Compounds 294 Discussion 294 References 295

22. Tea (Camellia oleifera) Seeds: Use of Tea Seeds in Human Health Chanya Chaicharoenpong

List of Abbreviations 299 Introduction 300 Botanical Description 300 Historical Cultivation and Usage 300 Present-day Cultivation and Usage 301 Applications to Health Promotion and Disease Prevention 301 Adverse Effects and Reactions (Allergies and Toxicity) 310 Summary Points 311 References 311

> 23. Effect of *Nigella sativa* on Blood Diseases: A Review Azar Hosseini and Hossein Hosseinzadeh

Introduction 315

Effect of *Nigella sativa* on Hematological Parameters 316 Induction of Anemia by Chemical Compounds 316 Clinical Studies 321 Conclusion 324 References 325

24. Dermatological Effects of Nigella sativa and Its Constituent, Thymoquinone: A Review

Arezoo Rajabian and Hossein Hosseinzadeh

Introduction 329 Methods 338 Anti-inflammatory and Immunomodulatory Properties of Nigella sativa and Its Constituent, TQ, Used to Treat Skin Ailments 339 In vitro and in Vivo Preclinical Studies 339 Clinical Studies 340 Anticancer 341 In vitro Studies 341 In vivo Studies 342 Wound Healing Effects 342 In vivo Studies 342 In vitro Studies 343 Antimicrobial Properties Against Skin Relevant Pathogens 343 Antibacterial 343 In vitro Studies 343 In vivo Studies 344 Antifungal Effects 344 Antiparasitic Properties 346 Conclusion 348 References 348

25. Indian Mustard (Brassica juncea L.) Seeds in Health Reka Szőllősi

List of Abbreviations 357 Introduction 357 Botanical Descriptions 358 Historical Cultivation and Usage 358 Present-Day Cultivation and Usage 358 Applications to Health Promotion and Disease Prevention 359

Adverse Effects and Reactions (Allergies and Toxicity) 362 Summary Points 362 References 363

26. Potential Role of Seeds From India in Diabetes

Kaveri Mahadev Adki, Ankit Pravin Laddha, Anil Bhanudas Gaikwad, and Yogesh Anant Kulkarni

Introduction 365 Seeds from Medicinal Plants and Their Role in Diabetes 366 Conclusion 387 References 388

27. Lupine Seeds (*Lupinus* spp.): History of Use, Use as An Antihyperglycemic Medicinal, and Use as a Food Plant Kathryn T. Knecht, Patricia Sanchez, and David H. Kinder

List of Abbreviations 393 Introduction 393 Botanical Description 394 Historical Medicinal Use 394 Current Medicinal Applications 395 Type 2 Diabetes 396 Fiber 397 Alkaloids 397 DPP-IV Inhibitors 398 Conglutins 398 Hyperlipidemia 399 Hypertension 399 Adverse Effects 399 Summary Points 400 References 400

28. Cancer Chemopreventive Potential of Seed Proteins and Peptides

Chia-Chien Hsieh, Blanca Hernández-Ledesma, and Ben O. de Lumen

List of Abbreviations 403 Introduction 403 Acknowledgments 414 References 414 29. Use of Red Clover (*Trifolium pratense* L.) Seeds in Human Therapeutics Hatice Çölgeçen, U. Koca, and H.N. Büyükkartal

List of Abbreviations 421 Introduction 421 Botanical Description 422 Historical Cultivation and Usage 422 Present-Day Cultivation and Usage 422 Applications to Health Promotion and Disease Prevention 424 Adverse Effects and Reactions, Allergies, and Toxicity 425 Summary Points 426 References 426

30. Milk Thistle Seeds in Health Sanjib Bhattacharya

List of Abbreviations 429 Introduction 429 Botanical Descriptions 430 Historical Cultivation and Usage 431 Present-day Cultivation and Usage 432 Applications to Health Promotion and Disease Prevention 432 Summary Points 437 References 437

V

Extracts From Nuts and Seeds in Health

31. Nut Consumption and Noncommunicable Diseases: Evidence From Epidemiological Studies

Daniela Martini, Justyna Godos, Letizia Bresciani, and Giuseppe Grosso

Introduction 441 Nuts and Metabolic Disorders 442 Nuts and Cardiovascular Disease Risk 446 Nuts and Cancer Risk 447

х

Nuts and Affective Disorders 448 Nuts and Cognitive Disorders 448 Conclusions 449 References 449

32. Beneficial Effects of Nuts From India in Cardiovascular Disorders Ankit Pravin Laddha, Kaveri Mahadev Adki, Anil Bhanudas Gaikwad, and Yogesh Anant Kulkarni

List of Abbreviations 453 Introduction 454 Cardiovascular Disorder 455 Almond and Cardiovascular Diseases 456 Cashew Nuts and Cardiovascular Diseases 459 Walnut and Cardiovascular Diseases 461 Pistachios and Cardiovascular Diseases 463 Peanuts and Cardiovascular Diseases 466 Conclusion 466 References 467

33. Seeds as Herbal Drugs Sanjib Bhattacharya

List of Abbreviations 471 Introduction 471 Medicinal Constituents of Seeds 472 Factors Influencing Medicinal Properties of Seeds 472 Seeds as Source of Medicinally Important Fixed Oils 473 Seeds as Herbal Drugs and Source of Medicinally Active Compounds 476 Summary Points 482 References 483

34. Therapeutic Importance of Caster Seed Oil Vetriselvan Subramanivan

List of Abbreviations 485 Introduction 485 Castor Oil Is Unique Among all Fats and Oils 486 Soaps, Waxes, and Greases 489 Pharmacological and Medicinal Use 489 Other Health Benefits of Castor Oil 490 Side Effects of Castor Oil 493 References 493

35. Coriandrum sativum L.: Characterization, Biological Activities, and Applications Filomena Silva, Celia Domeño, and Fernanda C. Domingues

Coriander Plant 497 Coriander Oil and Extracts 498 Coriander Biological Activities 503 Uses of Coriander Oil and Extracts 511 Concluding Remarks 514 References 514

36. Proteinase Inhibitors From Buckwheat (Fagopyrum esculentum Moench) Seeds

Yakov E. Dunaevsky, Natalya V. Khadeeva, Alexander A. Vassilevski, Valentina I. Domash, and Mikhail A. Belozersky

List of Abbreviation 521 Introduction 521 Botanical Descriptions 522 Present-day Cultivation and Usage 522 Applications to Health Promotion and Disease Prevention 522 Adverse Effects and Reactions (Allergies and Toxicity) 530 Summary Points 530 Acknowledgments 531 References 531

37. Pumpkin Seeds: Phenolic Acids in Pumpkin Seed (*Cucurbita pepo L.*) Vera Krimer-Malešević

List of Abbreviations 533 Introduction 533 Historical Cultivation and Usage 535 Present-Day Cultivation and Usage 535 Applications to Health Promotion and Disease Prevention 536 Adverse Effects and Reactions (Allergies and Toxicity) 541 Summary Points 541 References 541

38. Big Leaf Mahogany Seeds: Swietenia macrophylla Seeds Offer Possible Phytotherapeutic Intervention Against Diabetic Pathophysiology

Saikat Dewanjee, Paramita Paul, Tarun K. Dua, Shovonlal Bhowmick, and Achintya Saha

List of Abbreviations 543

Introduction 544

Description and Distribution 544

Ethnomedicinal Significance of Swietenia macrophylla Seeds 545

Swietenia macrophylla Seeds as a Potential

Phytotherapeutic Agent Against Diabetes 545

Swietenia macrophylla Seeds Against Ailments

Contribute in the Diabetic Pathogenesis 547

Toxicities and Contraindications of Swietenia macrophylla Seeds 548
Phytochemicals in Swietenia macrophylla Seeds 548
Antidiabetic Phytochemicals in Swietenia macrophylla Seeds 549
Metabolites in Swietenia macrophylla Seeds Against Pathogenesis Contribute in the Complications 555
Predicted Molecular Interactions of Swietenine with Signal Proteins and Detection of Druglikeness 556
Molecular Docking 556
In silico ADMET Prediction 559
Conclusion 560
References 561

Index 567

xii

Contributors

- Kaveri Mahadev Adki Shobhaben Prataphai Patel School of Pharmacy and Technology Management, SVKM's NMIMS, Mumbai, Maharashtra, India
- Larissa Lovatto Amorin Universidade Federal de Ouro Preto, Departamento de Ciências Biológicas, Núcleo de Pesquisas em Ciências Biológicas, Laboratório de Enzimologia e Proteômica, Campus Morro do Cruzeiro, Ouro Preto, Minas Gerais, Brazil
- Franklin Brian Apea-Bah Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada; Richardson Centre for Functional Foods and Nutraceuticals, Smartpak, University of Manitoba, Winnipeg, Manitoba, Canada
- Havva Atar Department of Biology, Faculty of Arts and Sciences, Zonguldak Bülent Ecevit University, Zonguldak, Turkey
- Cecilia Baraldi Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Mikhail A. Belozersky A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia
- **Trust Beta** Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada; Richardson Centre for Functional Foods and Nutraceuticals, Smartpak, University of Manitoba, Winnipeg, Manitoba, Canada
- Sanjib Bhattacharya West Bengal Medical Services Corporation Ltd., Salt Lake City, Kolkata, West Bengal, India
- Shovonlal Bhowmick Department of Chemical Technology, University of Calcutta, Kolkata, West Bengal, India
- Anders Borgen Agrologica, Houvej, Mariager, Denmark

- Letizia Bresciani Human Nutrition Unit, Department of Veterinary Science, University of Parma, Parma, Italy
- **H.N. Büyükkartal** Ankara University, Faculty of Science, Department of Biology, Tandoğan, Ankara, Turkey
- Chanya Chaicharoenpong Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Bangkok, Thailand
- **Phool Chandra** School of Pharmaceutical Sciences, IFTM University, Lodhipur Rajput, Moradabad, Uttar Pradesh, India
- Hatice Çölgeçen Department of Biology, Faculty of Arts and Sciences, Zonguldak Bülent Ecevit University, Zonguldak, Turkey
- William de Castro Borges Universidade Federal de Ouro Preto, Departamento de Ciências Biológicas, Núcleo de Pesquisas em Ciências Biológicas, Laboratório de Enzimologia e Proteômica, Campus Morro do Cruzeiro, Ouro Preto, Minas Gerais, Brazil
- Ben O. de Lumen Department of Nutritional Science and Toxicology, University of California Berkeley, Berkeley, California, United States
- Andressa Jacqueline de Oliveira Department of Biochemistry and Biotechnology, State University of Londrina, Londrina, Paraná, Brazil
- Alessandra de Paula Carli Universidade Federal de Ouro Preto, Departamento de Ciências Biológicas, Núcleo de Pesquisas em Ciências Biológicas, Laboratório de Enzimologia e Proteômica, Campus Morro do Cruzeiro, Ouro Preto, Minas Gerais, Brazil; Universidade Federal dos Vales do Jequitinhonha e Mucuri, Instituto de Ciência, Engenharia e Tecnologia, Campus do Mucuri, Teófilo Otoni, Minas Gerais, Brazil

CONTRIBUTORS

- Marcos Aurélio de Santana Universidade Federal de Ouro Preto, Departamento de Ciências Biológicas, Núcleo de Pesquisas em Ciências Biológicas, Laboratório de Enzimologia e Proteômica, Campus Morro do Cruzeiro, Ouro Preto, Minas Gerais, Brazil
- Saikat Dewanjee Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, West Bengal, India
- Irene Dini Pharmacy Department, "Federico II" University, Naples, Italy
- Valentina I. Domash V.F. Kuprevich Institute of Experimental Botany of the National Academy of Sciences of Belarus, Minsk, Belarus
- Celia Domeño Faculty of Veterinary Medicine, University of Zaragoza, Zaragoza, Spain
- Fernanda C. Domingues CICS-UBI Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
- **Tarun K. Dua** Department of Pharmaceutical Technology, University of North Bengal, Darjeeling, West Bengal, India
- Yakov E. Dunaevsky A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia
- María del Carmen Durán-de-Bazúa Chemical Engineering Department, Facultad de Química, Universidad Nacional Autónoma de México, Cd. Universitaria, Ciudad de México, Mexico
- Giorgia Foca Department of Life Sciences, University of Modena and Reggio Emilia, Reggio Emilia, Italy; Interdepartmental Research Center BIOGEST-SITEIA, University of Modena and Reggio Emilia, Reggio Emilia, Italy
- Fatemeh Forouzanfar Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Anil Bhanudas Gaikwad Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science, Pilani Campus, Pilani, Rajasthan, India

- Frixia Galán-Méndez Facultad de Ciencias Químicas, Universidad Veracruzana, Circuito Aguirre Beltrán s/n, Xalapa, Veracruz, Mexico
- Justyna Godos Oasi Research Institute IRCCS, Troina, Italy
- **Giuseppe Grosso** Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
- Milton Hércules Guerra de Andrade Universidade Federal de Ouro Preto, Departamento de Ciências Biológicas, Núcleo de Pesquisas em Ciências Biológicas, Laboratório de Enzimologia e Proteômica, Campus Morro do Cruzeiro, Ouro Preto, Minas Gerais, Brazil
- Ken-ichi Hatano Division of Molecular Science, Faculty of Science and Technology, Gunma University, Kiryu, Gunma, Japan
- Blanca Hernández-Ledesma Group of Food Proteins, Instituto de Investigación en Ciencias de la Alimentación (CIAL, CSIC-UAM, CEI UAM+CSIC), Madrid, Spain
- María del Rosario Hernández-Medel Instituto de Ciencias Básicas, Universidad Veracruzana, Avenida Luis Castelazo Ayala s/n, Xalapa, Veracruz, Mexico
- Melissa Tiemi Hirozawa Department of Biochemistry and Biotechnology, State University of Londrina, Londrina, Paraná, Brazil
- Azar Hosseini Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Razavi Khorasan Province, Iran
- Hossein Hosseinzadeh Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Razavi Khorasan Province, Iran; Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Razavi Khorasan Province, Iran
- **Chia-Chien Hsieh** School of Life Science, Undergraduate and Graduate Programs of Nutrition Science, National Taiwan Normal University, Taipei, Taiwan

xiv

- Ignasius Radix A.P. Jati Department of Food Technology, Faculty of Agricultural Technology, Widya Mandala Catholic University Surabaya, Surabaya, East Java, Indonesia
- Taiho Kambe Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- Natalya V. Khadeeva N.I. Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
- David H. Kinder College of Pharmacy, Ohio Northern University, Ada, OH, United States
- Kathryn T. Knecht Associate Professor of Pharmaceutical Sciences, School of Pharmacy, Loma Linda University, Loma Linda, CA, United States
- **U. Koca** Gazi University, Faculty of Pharmacy, Department of Pharmacognosy, Etiler, Ankara, Turkey
- Vera Krimer-Malešević National Reference Laboratories, Belgrade, Serbia
- Yogesh Anant Kulkarni Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's NMIMS, Mumbai, Maharashtra, India
- Ankit Pravin Laddha Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's NMIMS, Mumbai, Maharashtra, India
- Sonaly Cristine Leal Universidade Federal de Ouro Preto, Departamento de Ciências Biológicas, Núcleo de Pesquisas em Ciências Biológicas, Laboratório de Enzimologia e Proteômica, Campus Morro do Cruzeiro, Ouro Preto, Minas Gerais, Brazil
- **Qin Liu** School of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, Jiangsu, China
- Laura Maletti Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Andrea Marchetti Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Modena, Italy; Interdepartmental Research Center BIOGEST-SITEIA, University of Modena and Reggio Emilia, Reggio Emilia, Italy

- Daniela Martini DeFENS-Department of Food, Environmental and Nutritional Sciences, Division of Human Nutrition, University of Milan, Milan, Italy
- Takuya Miyakawa Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- **Mohammad Moradzad** Master of student of clinical biochemistry, department of clinical Biochemistry, Kurdistan University of medical sciences, Sanandaj, Iran, Kurdistan in Iran
- Souvik Mukherjee Department of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, Chhattisgarh, India
- Aline Myuki Omori Department of Pathological Sciences, State University of Londrina, Londrina, Paraná, Brazil
- Mario Augusto Ono Department of Pathological Sciences, State University of Londrina, Londrina, Paraná, Brazil
- Hesham F. Oraby Department of Agronomy, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
- Folake Lucy Oyetayo Department of Biochemistry, Ekiti State University, Ado-Ekiti State University Ado-Ekiti, Nigeria
- Victor Olusegun Oyetayo Department of Microbiology, Federal University of Technology, Akure, Nigeria
- Dilipkumar Pal Department of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, Chhattisgarh, India
- Paramita Paul Department of Pharmaceutical Technology, University of North Bengal, Darjeeling, West Bengal, India
- Yang Qiu Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Arezoo Rajabian Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
- Mohamed Fawzy Ramadan Agricultural Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt

CONTRIBUTORS

- Gianfranco Risuleo Dipartimento di Biologia e Biotecnologie "Charles Darwin", Sapienza Università di Roma - Piazzale Aldo Moro, Roma Italy
- Fabrizio Roncaglia Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Neetu Sachan School of Pharmaceutical Sciences, IFTM University, Lodhipur Rajput, Moradabad, Uttar Pradesh, India
- Achintya Saha Department of Chemical Technology, University of Calcutta, Kolkata, West Bengal, India
- **Patricia Sanchez** College of Letters and Science, University of California, Los Angeles, CA, United States
- Alexandre Gonçalves Santos Universidade Federal de Ouro Preto, Departamento de Ciências Biológicas, Núcleo de Pesquisas em Ciências Biológicas, Laboratório de Enzimologia e Proteômica, Campus Morro do Cruzeiro, Ouro Preto, Minas Gerais, Brazil
- Elisabete Yurie Sataque Ono Department of Biochemistry and Biotechnology, State University of Londrina, Londrina, Paraná, Brazil
- Simona Sighinolfi Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Filomena Silva ARAID Agencia Aragonesa para la Investigación y el Desarrollo, Zaragoza, Spain; Faculty of Veterinary Medicine, University of Zaragoza, Zaragoza, Spain; CICS-

UBI – Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal

- Julio A. Solís-Fuentes Instituto de Ciencias Básicas, Universidad Veracruzana, Avenida Luis Castelazo Ayala s/n, Xalapa, Veracruz, Mexico
- Vetriselvan Subramaniyan Associate Professor, Department of Pharmacology, Faculty of Medicine, MAHSA University, Bandar Saujana Putra, Selangor, Malaysia
- **Reka Szőllősi** Department of Plant Biology, University of Szeged, Szeged, Hungary
- Masakazu Takahashi Department of Bioscience and Biotechnology, Fukui Prefectural University, Fukui, Japan
- Masaru Tanokura Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Lorenzo Tassi Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Modena, Italy; Interdepartmental Research Center BIOGEST-SITEIA, University of Modena and Reggio Emilia, Reggio Emilia, Italy
- Alexander A. Vassilevski Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
- Enas Mohamed Wagdi Abdel-Hamed Soil Science Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt

xvi

Preface

The objective of this book is to bring together scientific material relating to the health benefits and, where appropriate, adverse effects of nuts and seeds. In general, nuts and seeds are important not only from a nutritional point of view but also in terms of their putative medicinal or pharmacological properties. This book aims to describe these properties in a comprehensive way. However, at the same time, it is recognized that harmful effects also arise. Some "nuts" and "seeds," for example, are poisonous when ingested in large quantities, but extracts have putative effects on tissues that may offer some therapeutic potential. Many of the nuts and seeds described in this book are components of traditional remedies without any present-day evidence to support their claims; their properties await rigorous elucidation and scientific investigation. Thus, the book embraces nuts and seeds in an unbiased way. The Editors also recognize that there is a wide interpretation of the terms nuts and seeds, and indeed some authorities have claimed that there are at least 12 seed types. The Editors have largely excluded cereals (grains) and other staple food crops, unless there was cause to include them, such as with buckwheat seeds. They have also selected some specific legumes, where there is some therapeutic potential in their extracts or interesting properties.

The book *Nuts and Seeds in Health and Disease Prevention* is divided into two parts. Part I, General Aspects and Overviews, contains holistic information, with sections on Overviews, Composition, Effects on Health, and Adverse Aspects. In Part II, Effects of Specific Nuts and Seeds, coverage is more specific. Each chapter in Part II contains sections entitled Botanical description, Historical cultivation and usage, Present-day cultivation and usage, Applications to health promotion and disease prevention (the main article), and, finally, Adverse effects and reactions. The Editors were faced with a difficult choice in organizing the chapters in Part II, and this was done using the simplest method available. Thus, in Part II, the nuts and seeds are listed alphabetically in terms of their common names, although each chapter contains full botanical terminology. We realize this is not perfect, for example, there are numerous types of cabbage seeds, and some nuts and seeds may have as many as 20 common names depending on the country where they are grown, but navigation and the retrieval of specific information is aided by a comprehensive index system.

This book is designed for health scientists, including nutritionists and dietitians, pharmacologists, public health scientists, those in agricultural departments and colleges, epidemiologists, health workers and practitioners, agriculturists, botanists, health care professionals of various disciplines, policymakers, and marketing and economic strategists. It is designed for teachers and lecturers, undergraduates, and graduates.

The Editors

This page intentionally left blank

Acknowledgments

The work of Dr. Watson's editorial assistant, Bethany L. Stevens, in communicating with authors and editors and working on the manuscripts was critical to the successful completion of the book. It is very much appreciated. Support for Ms. Stevens' and Dr. Watson's editing was graciously provided by Dr. Preedy, Dr. Watson, and Southwest Scientific Editing & Consulting, LLC. Direction and guidance from Elsevier's staff was critical. This page intentionally left blank

СНАРТЕК

12

Black Soybean Seed: Black Soybean Seed Antioxidant Capacity

Ignasius Radix A.P. Jati

Department of Food Technology, Faculty of Agricultural Technology, Widya Mandala Catholic University Surabaya, Surabaya, East Java, Indonesia

List of Abbreviations

CAM Cellular adhesion molecule CHD Coronary heart disease DNA Deoxyribonucleic acid DPPH Diphenyl-β-picrylhydrazyl FRAP Ferric reducing antioxidant power IRF-1 Interferon regulatory transcription factor-1 LDL Low-density lipoprotein LPS Lipopolysaccharide mRNA Messenger RNA PPARγ Peroxisome proliferator-activated receptor γ ROS Reactive oxygen species TBARS Thiobarbituric acid reactive substance TNF Tumor necrosis factor UVB Ultraviolet B VCAM Vascular cell adhesion molecule

Introduction

Soybeans have been consumed in Asian countries since ancient times, especially in China, Japan, Korea, and Indonesia. Foods based on soybeans, such as tofu, natto, and tempeh, are an integral part of the Asian diet, contributing a high amount of protein intake along with meat-based foods. For centuries, black soybeans have been known and used as traditional

148

remedies to treat common colds and fevers along with their symptoms such as headaches. Soybeans are also used for people who have irritable bowel syndrome and experience an uncomfortable sensation in the chest.¹ Investigations into the biological activities of black soybeans are rapidly increasing because of reports revealing that black soybeans have a high content of anthocyanin in their seed coat.² Anthocyanin is a secondary metabolite of plants that is responsible for the formation of their black, purple, and red color. Studies on anthocyanin in black soybean seed coats also show that black soybean seed coat extract has anti-oxidant activities postulated to contribute to the prevention of degenerative diseases such as cancer, coronary heart disease, and diabetes because of their ability to inhibit the rate of oxidation in human metabolism.³ Studies on elucidating the mechanism of anthocyanin in preventing and treating such diseases have become the focus of scientists. This chapter provides information on black soybeans as a plant and a source of food products and describes the ability of the extract of anthocyanin of soybeans and its food products to prevent diseases and promote human health.

History, cultivation, and use

According to ancient scripture, black soybeans are believed to have been planted and cultivated in Asia. The period of the Shang Dynasty (1700–1100 BC) was postulated to be the earliest time of black soybean cultivation, especially in northern China.⁴ Together with rice, wheat, millet, and adzuki beans, black soybeans were named as one of the five sacred grains mainly owing to their importance in the daily life of the Chinese, although black soybeans were rarely consumed as a staple food but were commonly used as a medicinal food and remedies. It is believed that the inclusion of black soybeans as a sacred grain was for mythological and supernatural reasons as a grains from God that has the ability to cure numerous diseases. The increased amount of international trading in the 16th century led to the spread of black soybean cultivation in other Asia regions such as Japan, Korea, and Indonesia. Beside its use as a food, black soybeans have become an essential part of many traditional ceremonies. In Indonesia, black soybeans are used in traditional ceremonies such as weddings and funerals.⁵

The soybean (*Glycine max* L. Merril) is a species of plant belonging to the Leguminoseae group also known as soja max and glycine soja. There are numerous varieties of soybean, based on the color of their seed coat. The most common are yellow, green, and black seed coat soybeans. In addition to the black seed coat, black soybeans have a yellow seed interior (cotyledons) and a near-spherical shape. To obtain anthocyanin, the seed coat should be removed from the cotyledons. This can be done by soaking, boiling, and then peeling or drying followed by coarse milling of the black soybean. Compared with other beans, the hilum of soybeans is longer and thinner. Soybean species are considered a short season crop that usually needs 3–5 months of growth from germination until harvest. As a rainfed bush crop, an average of 350–450 mm rainfall is needed for the black soybean plant for optimal growth and yield.⁶ Despite its demand for a sufficient amount of water, excess water can have a detrimental effects on the plant, such as impaired germination, leading to anaerobic respiration, and an increase in the incidence of pathogenic activity. Although

Product	Description	Country of Production
In si, tau si	Dried by-product of mashed black soybean sauce fermented with <i>Aspergillus oryzae</i>	China, the Philippines
Tempeh	Traditional food from black or yellow soybean fermented with <i>Rhizopus oligosporus</i>	Indonesia
Tofu	Protein gel-like product from soybeans	Asian countries
Soy sauce	Sauces fermented with A. oryzae and Aspergillus sojae, used as condiment	Asian countries
Natto	Traditional Japanese soybean product fermented with Bacillus subtilis	Japan
Chungkookjang	Steamed black soybeans fermented with Bacillus species	Korea

TABLE 12.1 Black Soybean-Based Food Products.

black soybeans are commonly found in tropical areas, based on their nature, they can be cultivated within a wide range of temperatures. The development of fermentation methods has led to an in black soybean-based food products.^{7–10} An example of black soybean-based food products is presented in Table 12.1.

Although black soybeans are popular as a food with medicinal properties, their cultivation and use are limited compared with yellow soybean. There are few large-scale farming areas as well as food industries for black soybeans. A report from Indonesia revealed that there is cooperation between large-scale industry and farmers to plant black soybeans for use in soy sauce, which is a popular condiment among Indonesians.¹¹ This cooperation has become part of community empowerment to increase the population's livelihood and reduce the poverty of traditional farmers who have only a small farm, by providing the seeds and purchasing the yield at a fair price. There is still much future potency that can be optimized from black soybean seeds especially related to their health-promoting properties. For example, industries could extract anthocyanin from the black soybean seed coat. From the seeds, bioactive peptides could be isolated, and both could potentially be used as an alternative medicine.

Anthocyanin

Black soybeans are not as popular as yellow soybeans, but researchers have investigated the ability of black soybeans to provide health-promoting properties as conceived of in several Asian countries for centuries. One factor with a key role in the ability of black soybean to be used as a remedy is the anthocyanin content in the seed coat. Anthocyanin is part of phenolic substances, which are the secondary metabolites of plants. Numerous studies reported that polyphenol substances exhibit significant antioxidative activities; they are suggested to be responsible for preventing several degenerative diseases.¹² Anthocyanin is a class of polyphenols that is a water-soluble pigment responsible for the red, blue, and black colors of flowers and plants. Anthocyanin is widely known to have bioactive properties and substantial pharmaceutical activity. Fig. 12.1 shows the chemical structure of anthocyanin.

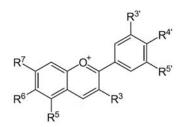


FIGURE 12.1 Chemical structure of anthocyanin.

A study of the anthocyanin content of black soybeans was first reported in 1921 by Nagai regarding its formation in plants.¹³ Research on anthocyanin in plants including black soybeans has been growing rapidly. These findings includes the elucidation of individual anthocyanins and their biological activities.¹⁴ Information about individual anthocyanins in black soybeans is presented in Table 12.2. As shown in Table 12.2, the major anthocyanin found in black soybean seed coat is cyanidin-3-glucoside. Other individual anthocyanins such as malvidin, delphinidin, and petunidin-3-glycoside, which are considered new anthocyanin, are also presented. There are variations in anthocyanin content in the black soybean seed coat. This could be because of the species, climatic conditions, and the geographical location.¹⁵ However, compared with other plant foods such as rice, sorghum, berries, and grapes, the anthocyanin content of black soybean are illustrated in Table 12.3.

Antioxidant activity of black soybeans and black soybean-based food products

Studies on the antioxidant activity of plant foods are rapidly increasing. In the human system, antioxidants are is believed to have the important function of stabilizing free radicals, whereas free radicals are substances commonly found in humans as a result of metabolism.¹⁶

Black Soybean varieties/Sources	Individual Anthocyanins	References
Cheongja 3/Korea	Cyanidin-3-O-glucoside, petunidin-3-O-glucoside, delphinidin-3-O-glucoside	Jang et al. ⁶¹
A3/Sichuan, China	Cyanidin 3 glucoside, petunidin 3 glucoside, delphinidin 3 glucoside, peonidin 3 glucoside	Wu et al. ⁶²
Black Tokyo/Serbia	Cyanidin 3 glucoside, pelargonidin 3 glucoside, delphinidin 3 glucoside	Kalušević et al. ⁶³
Cheongja 4 ho/Miryang, Korea	Cyanidin-3-O-glucoside, petunidin-3-O-glucoside, delphinidin-3-O-glucoside	Ryu and Koh ⁶⁴
852/Heilongjiang, China	Cyanidin 3 glucoside	Xie et al. ⁶⁵

 TABLE 12.2
 Individual Anthocyanin of Black Soybeans.

Antioxidant activity of black soybeans and black soybean-based food products

Black Soybean varieties/Sources	Total Anthocyanin content (mg/G)	References
Mallika	13.63	Astadi et al. ⁴⁶
Cikuray	14.68	Astadi et al. 46
Cheongja 3/Korea	12.11	Jang et al. ⁶¹
A3/Sichuan, China	3.95	Wu et al. ⁶²
QWT31/Yunnan, China	4.96	Wu et al. ⁶²
QWT5/Guizhou, China	3.01	Wu et al. ⁶²
JJ16/Chongqing. China	3.62	Wu et al. ⁶²
Black Tokyo/Serbia	1.92	Kalušević et al. 63
Cheongja4ho/Miryang, Korea	1.68	Ryu and Koh ⁶⁴
852/Heilongjiang, China	6.96	Xie et al. ⁶⁵

 TABLE 12.3
 Anthocyanin Content of Different Varieties of Black Soybeans.

The few free radicals in a normal condition usually can be neutralized by antioxidants synthesized by the human body, such as superoxide dismutase or glutathione peroxidase. However, pollution, an unbalanced diet, excessive exposure to sunlight, and smoke could multiply the number of free radicals, which need additional antioxidants from the diet to prevent excessive oxidation.¹⁷ Free radicals attack lipids, protein, and DNA, leading to the development of various diseases such as atherosclerosis, cancer, and coronary heart disease.¹⁸

Rapid progress in research on antioxidant activity is supported by the development of antioxidant activity assays. In vitro procedures such as diphenyl- β -picrylhydrazyl (DPPH), ferric reducing antioxidant power (FRAP), oxygen radical absorbance capacity, thiobarbituric acid reactive substance (TBARS), linoleic bleaching system, superoxide anion, hydroxyl radical antioxidant capacity, total reactive antioxidant potential, potassium ferricyanide reducing power, and cupric reducing antioxidant capacity were created to mimic biological processes in the human body.^{19–21} These procedures could assist researchers in the early stages of exploring the potency of samples of antioxidants. Among a number of procedures, DPPH is the most commonly used method for examining the antioxidant activity of black soybean seed coat extract. Results showed that black soybean seed coat extract possesses high antioxidant activity owing to anthocyanin and other phenolic content that could act as hydrogen donors that donating hydrogen to stabilize free radicals.²²⁻²⁴ The 2'-azinobis(3-ethylbenzothiazoline-6-sulphonic acid) method is also widely used to determine black soybean antioxidant activity. The results are in line with the DPPH method, which shows that black soybean extract is able to donate a hydrogen atom.^{25,26} Another commonly method used is FRAP. Reports suggest that black soybean seed coat extract significantly reduces iron, which means that it has high antioxidant content.^{27,28} The antioxidant activity of black soybeans can also be examined in a lipid system using linoleic acid or other lipids. It was proven that black soybean extract was able to reduce lipid oxidation, as measured by the inhibition of TBARS formation.^{29,30} This simple in vitro technique assists in the research of the biological activity of black soybeans using cell cultures, animal experiments, and human subjects to explore the mechanisms of health-promoting and disease-preventing properties of black soybean seeds.

Beside the investigation into the antioxidant activity of raw black soybean seed extract, there are also reports on the ability of black soybean seed food products to act as antioxidants. A study on the antioxidant activity of tofu as the most popular soybean-based product was conducted using black bean tofu. Tofu from black bean showed relatively high antioxidant activity when it was examined using the thiocyanate method. Moreover, from the lipid peroxidation assay, black bean tofu inhibited the rate of lipid peroxidation, which affected the shelf life of tofu to be longer than that of yellow soybean tofu.³¹

Meanwhile, research on *chungkookjang*, a traditional Korean paste made of fermented black soybeans, revealed that fermented black soybeans could scavenge DPPH radicals better than unfermented ones. It was also postulated from an in vivo study that a diet of *chungkookjang* could increase superoxide dismutase and catalase activity as an antioxidant within the body, and thus could stabilize free radicals. Moreover, hepatic TBARS was also reduced. The higher antioxidant activity of fermented black soybeans results from the increase in polyphenol content caused by partial cleavage of the glycosides by fermentation.³² Research on food products shows that the antioxidant activity does not significantly decrease with processing.^{33–35} This finding can be seen in Fig. 12.2, which shows that different processing times and temperatures did not significantly decrease the antioxidant activity of black and yellow soybean crackers. This provides a promising future for the development of functional foods from black soybean seeds. Thus, consuming black soybean seed products should be promoted to increase the intake of healthy food.

Health-promoting and disease-preventing effects of black soybean seed

Black soybean seed has been used as a medicinal food and remedy for centuries. However, there is only limited scientific research to support such claims. Much research has been done to elucidate the mechanism of black soybean seed for promoting health and preventing disease. Factors related to the development of many diseases have been found, and the researchers elaborated on the results to investigate the health-enhancing properties of black soybean seed against inflammatory disease, atherosclerosis, diabetes, obesity, coronary heart disease, cancer, and so on.

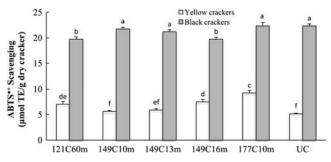


FIGURE 12.2 Effects of different types of processing on antioxidant activity of soybean crackers. *ABTS*, 2,2'- azino-bis(3-ethylbenzothiazoline-6-sulphonic acid; *TE*, Trolox Equivalent; *UC*, Unbaked Control.

152

Atherosclerosis and coronary heart disease

Atherosclerosis is a condition in which the blood vessels are partially or fully blocked by the accumulation of plaque; thus, blood cannot circulate throughout the body. The development of atherosclerosis is believed to be caused by the oxidation of low-density lipoprotein (LD)L. As a transport mechanism for cholesterol, LDL is potentially oxidized and may accumulate in the lining of blood vessels. This condition leads to the development of diseases such as coronary heart disease (CHD). The beneficial properties of anthocyanin in reducing CHD risk have been reported.^{36–38} The ability of black soybeans to prevent the oxidation of LDL is proposed to be related to the delay of plaque formation. An early report also suggested that the daily intake of soybean protein is associated with a decrease in cardiovascular disease risk.³⁹ Other studies showed that the polyphenol content of soybean seed coats could prolong the lag time of LDL oxidation and that the ability of black soybean for this activity compared with vellow soybeans.⁴⁰ Research on the Malika and Cikuray varieties of black soybean in Indonesia revealed that the seed coat extract had the ability to prevent isolated human LDL oxidation. This beneficial properties could be due to the ability of anthocyanin in the extract to scavenge free radicals and thus inhibit the reaction between LDL and free radicals.⁴¹ By using an in vitro monocyte-endothelial cell adhesion assay, researchers proved that black soybean extract had the ability to prevent atherosclerosis. This method is usually used to examine the potency of a sample to inhibit the development of atherosclerosis by mimicking the first phase of atherosclerosis.⁴² In the early stage of atherosclerosis, cellular adhesion molecules (CAMs) on the vascular endothelial cells are activated by different factors, especially inflammatory conditions. After that, CAMs are bound by leukocytes such as monocytes.⁴³ Both the seed coat extract and the embryo extract of Yak Kong black soybean from Korea were able to attenuate the adhesion of THP-1 monocytes to LPSinduced human umbilical vein endothelial cells by up to 40% compared with the lipopolysaccharide (LPS)-stimulated control group. This research was done within a nontoxic dose of extract (5-20 mg/mL).⁴⁴

Obesity and diabetes

Obesity has become an enormous problem in both developed and developing countries. Moreover, the rate of obesity in children is increasing rapidly. Obesity is believed to have an important role as a risk factor for diabetes.⁴⁵ A study on the effect of consuming black soybean anthocyanin in rats revealed that anthocyanin is suggested to have antiobesity properties as well as provide hypolipidemic effects. Supplementation of black soybean anthocyanin in high-fat diet rats could moderate weight gain in the liver and decrease epididymal and perirenal fat pads. Moreover, black soybean anthocyanin supplementation improved the lipid profile of rats by decreasing cholesterol and triglyceride serum levels and increasing the high-density lipoprotein cholesterol concentration.⁴⁶

Research on the antiobesity properties of *Monascus pilosus* fermented black soybean was reported. Using adipocytes and high-fat diet-induced obese mice, the research revealed that lipid accumulation in 3T3-L1 adipocytes was inhibited by fermented black soybeans. Consuming fermented black soybeans could decrease body weight gain in the mice. Meanwhile, consuming fermented black soybeans significantly lowered the messenger RNA

12. Black Soybean Seed: Black Soybean Seed Antioxidant Capacity

(mRNA) levels of adipogenesis-related genes such as peroxisome proliferator activated receptor, fatty acid synthase, and fatty acid binding protein.⁴⁷Another report on the relation between consuming black soybeans and obesity prevention was reported in Korea. Consuming black soybeans decreased the intake of food, fat accumulation, and lipogenesis gene expression such as acetyl CoA carboxylase and CCAAT-enhancer-binding protein α . Fig. 12.3 shows the fat weight and adipocyte cell size in control and high-fat diet mice treated with black soybeans, and high-fat diet mice treated with orlistat, respectively. The results revealed that black soybean treatment decreased the fat weight and adipocyte cell size of high-fat diet rats. Black soybean intake was also closely related to the increase level of lipoprotein lipase, hormone-sensitive lipase, and adenosine monophosphate—activated protein kinase as a lipolysis protein. Although strong evidence of the effect of black soybean on lipogenesis gene expression and a decrease in fat accumulation was clearly observed, the mechanism of action of black soybean seed coat extract remains unclear.⁴⁸

Adipocyte differentiation is closely related to the incidence of diabetes. A study on the antidiabetes effect of black soybean and its anthocyanin cyanidin 3 glucoside was done on the adipocyte differentiation of mice. Intake of black soybean and its anthocyanin decreased

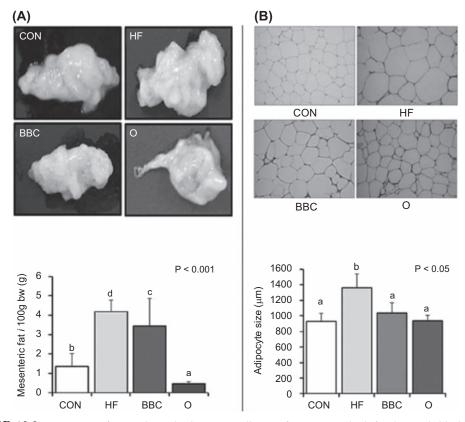


FIGURE 12.3 Mesenteric fat weight and adipocytes cell size of mice. *BBC*, high-fat diet with black soybean treatment; *CON*, control; *HF*, high-fat diet; *O*, high-fat diet with orlistat treatment.

II. Role of Seeds in Nutrition and Antioxidant Activities

154

body weight as well as the weight of white adipose tissue and the size of adipocytes in white adipose tissue. Moreover, smaller adipocytes were observed on 3T3-LI cells treated with black soybean extract. This result correlated with the increase in peroxisome proliferator-activated receptor γ and C/enhancer binding protein α gene expression. Moreover, it was suggested that adiponectin secretion increased, tumor necrosis factor (TNF) decreased, insulin signaling was activated, and the uptake of glucose increased.⁴⁹

Inflammation and cancer

Inflammation has long been implicated in the development of cancer. Studies of inflammation related to the onset of various diseases have been widely performed, including the antiinflammatory effect of black soybean anthocyanin.^{50–52} A study showed that anthocyanin from black soybeans could inhibit the antigen-induced TNF- α stimulation of vascular cell adhesion molecule-1 (VCAM-1) by regulating DNA sequence GATAs and interferon regulatory transcription factor-1 (IRF-1). VCAM-1 is believed to be a target for highly metastatic human melanoma cells. These cells have a high-affinity conformation at their cell surface, facilitating adherence and subsequent migration. The IRF-1 and transcription factor genes bind to GATA in the VCAM-1 gene promoter region. These metastatic cells have a pathological role in inflammatory processes that eventually lead to cancer and atherosclerosis. Stimulation of cells with TNF- α increases VCAM-1 expression. Pretreatment of cells with anthocyanins inhibited VCAM-1 expression and reduced the nuclear levels of GATAs and IRF-1.⁵³

Antiinflammatory and antifibrotic activities of Cheongja 3 black soybean was reported using an animal model for the treatment of Peyronie disease. The result showed that Peyronie disease plaque formation was reduced. Moreover, strong transforming growth factor- β 1 immunoreactivity was observed with the increased expression in the collagenous connective tissue and fibroblast.⁵⁴

Several epidemiological studies consistently suggested that the risk for cancer can be reduced by consuming soybean-based foods containing an antioxidant compound such as anthocyanin.^{55,56} A case-control report from Korea revealed that the risk for breast cancer in Korean women was reduced by consuming black soybeans.⁵⁷ This is attributed to the anthocyanin content of black soybeans.

Research on the antiinflammatory and antiproliferative effects of black soybean anthocyanin was also done using HT-29 human colon adenocarcinoma cells, which showed that cyanidin and delphinidin significantly inhibited cell growth and suppressed cyclooxygenase-2 and inducible nitric oxide synthase mRNA production.⁵⁸

Anthocyanin was also reported to have the ability to protect skin as an anticancer and antiaging agent.⁵⁹ It was reported that black soybean anthocyanin defended keratinocytes from ultraviolet B (UVB)-induced cytotoxicity and apoptosis. The mechanism behind this ability of anthocyanin is inhibition of the caspase 3 pathway and Bax protein level reduction as a proapoptotic. A study on mouse skin revealed that anthocyanin can prevent apoptotic cell death. This probably results from the ability of anthocyanin to modulate UVB-mediated reactive oxygen species (ROS) production after UVB exposure. ROS has a key role in the apoptosis pathway. Therefore, by modulating ROS production, lipid peroxidation could be reduced, and the oxidative damage of DNA and cellular protein could be obviated.⁶⁰

Summary Points

Black soybeans originated from China and are widely cultivated in Indonesia, Japan, and Korea.

Black soybeans are usually used for traditional medicine, herbs, and remedies.

Black soybeans can be used as ingredients to produce tempeh, natto, miso, sweet soy sauce, tofu, and soy milk.

Black soybeans contain a high amount of anthocyanin in their seed coat, especially cyanidin 3 glucoside, which possesses high antioxidant activity.

Processing does not significantly decrease the antioxidant activity of black soybeans.

Black soybeans have antiobesity, antidiabetes, anticancer, and antiatherosclerotic properties.

References

- 1. Furuta S, Takahashi M, Takahata Y, et al. Radical-scavenging activities of soybean cultivars with black seed coats. *Food Science and Technology Research*. 2007. https://doi.org/10.3136/fstr.9.73.
- Choung MG, Baek IY, Kang ST, et al. Isolation and determination of anthocyanins in seed coats of black soybean (Glycine max (L.) Merr.). *Journal of Agricultural and Food Chemistry*. 2001. https://doi.org/10.1021/jf010550w.
- Mohamed S. Functional foods against metabolic syndrome (obesity, diabetes, hypertension and dyslipidemia) and cardiovascular disease. Trends in Food Science & Technology. 2014. https://doi.org/10.1016/j.tifs.2013.11.001.
- Radix Astadi I, Paice AG. Black soybean (Glycine max L: Merril) seeds' antioxidant capacity. In: Nuts and Seeds in Health and Disease Prevention. 2011. https://doi.org/10.1016/B978-0-12-375688-6.10027-1.
- Sjauw-Koen-Fa AR, Blok V, Omta O. Exploring the applicability of a sustainable smallholder sourcing model in the black soybean case in Java. *The International Food and Agribusiness Management Review*. 2017. https://doi.org/ 10.22434/IFAMR2016.0171.
- Dashti NH, Cherian VM, Smith DL, Mcgill J. Soybean production. *Abiotic Biot Stress Soybean Prod*. 2016. https:// doi.org/10.1016/B978-0-12-801536-0.00010-4.
- Iwasaki K, Okazaki K. Brewing of functional soybean paste (miso) using black soybean. Journal of the Brewing Society of Japan. 2014. https://doi.org/10.6013/jbrewsocjapan1988.103.17.
- Chen KI, Erh MH, Su NW, Liu WH, Chou CC, Cheng KC. Soyfoods and soybean products: from traditional use to modern applications. *Applied Microbiology and Biotechnology*. 2012. https://doi.org/10.1007/s00253-012-4330-7.
- 9. Murooka Y, Yamshita M. Traditional healthful fermented products of Japan. *Journal of Industrial Microbiology and Biotechnology*. 2008. https://doi.org/10.1007/s10295-008-0362-5.
- Shahidi F, Ho C-T. Flavor chemistry of ethnic foods. In: Flavor Chemistry of Ethnic Foods. 2011. https://doi.org/ 10.1007/978-1-4615-4783-9_1.
- Apriyantono A, Setyaningsih D, Hariyadi P, Nuraida L. Sensory and peptides characteristics of soy sauce fractions obtained by ultrafiltration. *Advances in Experimental Medicine and Biology*. 2004. https://doi.org/10.1007/ 978-1-4419-9090-7_15.
- Poti F, Santi D, Spaggiari G, Zimetti F, Zanotti I. Polyphenol health effects on cardiovascular and neurodegenerative disorders: a review and meta-analysis. *International Journal of Molecular Sciences*. 2019. https://doi.org/ 10.3390/ijms20020351.
- Kim SM, Chung MJ, Ha TJ, et al. Neuroprotective effects of black soybean anthocyanins via inactivation of ASK1-JNK/p38 pathways and mobilization of cellular sialic acids. *Life Sciences*. 2012. https://doi.org/ 10.1016/j.lfs.2012.04.025.
- Lee JH, Kang NS, Shin SO, et al. Characterisation of anthocyanins in the black soybean (Glycine max L.) by HPLC-DAD-ESI/MS analysis. *Food Chemistry*. 2009. https://doi.org/10.1016/j.foodchem.2008.05.056.
- Kim EH, Lee OK, Kim JK, et al. Isoflavones and anthocyanins analysis in soybean (Glycine max (L.) Merill) from three different planting locations in Korea. *Field Crops Research*. 2014. https://doi.org/10.1016/j.fcr.2013.10.020.

156

References

- 16. Cadenas E, Davies KJA. Mitochondrial free radical generation, oxidative stress, and aging. *Free Radical Biology and Medicine*. 2000. https://doi.org/10.1016/S0891-5849(00)00317-8.
- Pisoschi AM, Pop A. The role of antioxidants in the chemistry of oxidative stress: a review. European Journal of Medicinal Chemistry. 2015. https://doi.org/10.1016/j.ejmech.2015.04.040.
- Mayne ST. Antioxidant nutrients and chronic disease: use of biomarkers of exposure and oxidative stress status in epidemiologic research. *Journal of Nutrition*. 2018. https://doi.org/10.1093/jn/133.3.933s.
- Magalhães LM, Segundo MA, Reis S, Lima JLFC. Methodological aspects about in vitro evaluation of antioxidant properties. *Analytica Chimica Acta*. 2008. https://doi.org/10.1016/j.aca.2008.02.047.
- Gülçin I. Antioxidant activity of food constituents: an overview. Archives of Toxicology. 2012. https://doi.org/ 10.1007/s00204-011-0774-2.
- Moon JK, Shibamoto T. Antioxidant assays for plant and food components. *Journal of Agricultural and Food Chem-istry*. 2009. https://doi.org/10.1021/jf803537k.
- Xu BJ, Chang SKC. A comparative study on phenolic profiles and antioxidant activities of legumes as affected by extraction solvents. *Journal of Food Science*. 2007. https://doi.org/10.1111/j.1750-3841.2006.00260.x.
- Xu B, Chang SKC. Antioxidant capacity of seed coat, dehulled bean, and whole black soybeans in relation to their distributions of total phenolics, phenolic acids, anthocyanins, and isoflavones. *Journal of Agricultural and Food Chemistry*. 2008. https://doi.org/10.1021/jf801196d.
- Juan MY, Chou CC. Enhancement of antioxidant activity, total phenolic and flavonoid content of black soybeans by solid state fermentation with Bacillus subtilis BCRC 14715. *Food Microbiology*. 2010. https://doi.org/10.1016/ j.fm.2009.11.002.
- Peng H, Li W, Li H, Deng Z, Zhang B. Extractable and non-extractable bound phenolic compositions and their antioxidant properties in seed coat and cotyledon of black soybean (Glycinemax (L.) merr). *Journal of Functional Foods.* 2017. https://doi.org/10.1016/j.jff.2017.03.003.
- Xu JL, Shin JS, Park SK, et al. Differences in the metabolic profiles and antioxidant activities of wild and cultivated black soybeans evaluated by correlation analysis. *Food Research International*. 2017. https://doi.org/ 10.1016/j.foodres.2017.08.026.
- Kumar V, Rani A, Dixit AK, Pratap D, Bhatnagar D. A comparative assessment of total phenolic content, ferric reducing-anti-oxidative power, free radical-scavenging activity, vitamin C and isoflavones content in soybean with varying seed coat colour. *Food Research International*. 2010. https://doi.org/10.1016/j.foodres.2009.10.019.
- Dajanta K, Janpum P, Leksing W. Antioxidant capacities, total phenolics and flavonoids in black and yellow soybeans fermented by Bacillus subtilis: a comparative study of Thai fermented soybeans (thua nao). *International Food Research Journal*. 2013;20(6):3125–3132.
- Byun JS, Han YS, Lee SS. The effects of yellow soybean, black soybean, and sword bean on lipid levels and oxidative stress in ovariectomized rats. *International Journal for Vitamin and Nutrition Research*. 2010. https://doi.org/ 10.1024/0300-9831/a000010.
- Puvača N, Kostadinović L, Popović S, et al. Proximate composition, cholesterol concentration and lipid oxidation of meat from chickens fed dietary spice addition (Allium sativum, Piper nigrum, Capsicum annuum). *Animal Production Science*. 2016. https://doi.org/10.1071/an15115.
- Shih MC, Yang KT, Kuo SJ. Quality and antioxidative activity of black soybean tofu as affected by bean cultivar. *Journal of Food Science*. 2002. https://doi.org/10.1111/j.1365-2621.2002.tb10623.x.
- 32. P S, K DS, K S, M BR. Fermented soybeans, Chungkookjang, prevent hippocampal cell death and β-cell apoptosis by decreasing pro-inflammatory cytokines in gerbils with transient artery occlusion. *Experimental Biology and Medicine*. 2016. https://doi.org/10.1177/1535370215606811.
- Lee N-R, Woo G-Y, Jang J-H, et al. Antioxidant production by Bacillus methylotrophicus isolated from chungkookjang, Korean traditional fermented food. *International Journal of Environmental Science and Technology*. 2013. https://doi.org/10.5322/jesi.2013.22.7.855.
- Slavin M, Lu Y, Kaplan N, Yu L. Effects of baking on cyanidin-3-glucoside content and antioxidant properties of black and yellow soybean crackers. *Food Chemistry*. 2013. https://doi.org/10.1016/j.foodchem.2013.04.039.
- Dixit AK, Bhatnagar D, Kumar V, Rani A, Manjaya JG, Bhatnagar D. Gamma irradiation induced enhancement in isoflavones, total phenol, anthocyanin and antioxidant properties of varying seed coat colored soybean. *Journal of Agricultural and Food Chemistry*. 2010. https://doi.org/10.1021/jf904228e.

12. Black Soybean Seed: Black Soybean Seed Antioxidant Capacity

- Kimble R, Keane KM, Lodge JK, Howatson G. Dietary intake of anthocyanins and risk of cardiovascular disease: a systematic review and meta-analysis of prospective cohort studies. *Critical Reviews in Food Science and Nutrition*. 2018. https://doi.org/10.1080/10408398.2018.1509835.
- Cassidy A, Bertoia M, Chiuve S, Flint A, Forman J, Rimm EB. Habitual intake of anthocyanins and flavanones and risk of cardiovascular disease in men. *American Journal of Clinical Nutrition*. 2016. https://doi.org/10.3945/ ajcn.116.133132.
- Amiot MJ, Riva C, Vinet A. Effects of dietary polyphenols on metabolic syndrome features in humans: a systematic review. Obesity Reviews. 2016. https://doi.org/10.1111/obr.12409.
- Messina M. Insights gained from 20 Years of soy research. Journal of Nutrition. 2010. https://doi.org/10.3945/ jn.110.124107.
- Takahashi R, Ohmori R, Kiyose C, Momiyama Y, Ohsuzu F, Kondo K. Antioxidant activities of black and yellow soybeans against low density lipoprotein oxidation. *Journal of Agricultural and Food Chemistry*. 2005. https:// doi.org/10.1021/jf048062m.
- Astadi IR, Astuti M, Santoso U, Nugraheni PS. In vitro antioxidant activity of anthocyanins of black soybean seed coat in human low density lipoprotein (LDL). *Food Chemistry*. 2009;112(3). https://doi.org/10.1016/ j.foodchem.2008.06.034.
- Moore KJ, Tabas I. Macrophages in the pathogenesis of atherosclerosis. Cell. 2011. https://doi.org/10.1016/ j.cell.2011.04.005.
- Wang H, Patterson C, Praticò D, et al. Atherosclerosis: Risks, Mechanisms, and Therapies. 2015. https://doi.org/ 10.1002/9781118828533.
- Lee CC, Dudonné S, Dubé P, et al. Comprehensive phenolic composition analysis and evaluation of Yak-Kong soybean (Glycine max) for the prevention of atherosclerosis. *Food Chemistry*. 2017. https://doi.org/10.1016/ j.foodchem.2017.05.012.
- Guzzardi MA, Iozzo P. Obesity and diabetes. In: Interdisciplinary Concepts in Cardiovascular Health: Volume II: Secondary Risk Factors. 2013. https://doi.org/10.1007/978-3-319-01050-2_2.
- Kim J, Lee HJ, Kim JY, Kim MK, Kwon O. Plant proteins differently affect body fat reduction in high-fat fed rats. *Preventive Nutrition and Food Science*. 2012. https://doi.org/10.3746/pnf.2012.17.3.223.
- Lee YS, Choi BK, Lee HJ, et al. Monascus pilosus-fermented black soybean inhibits lipid accumulation in adipocytes and in high-fat diet-induced obese mice. Asian Pacific Journal of Tropical Medicine. 2015;8(4):276–282. https://doi.org/10.1016/S1995-7645(14)60330-8.
- Kim SY, Wi HR, Choi S, Ha TJ, Lee BW, Lee M. Inhibitory effect of anthocyanin-rich black soybean testa (Glycine max (L.) Merr.) on the inflammation-induced adipogenesis in a DIO mouse model. *Journal of Functional Foods*. 2015;14:623–633. https://doi.org/10.1016/j.jff.2015.02.030.
- Matsukawa T, Inaguma T, Han J, Villareal MO, Isoda H. Cyanidin-3-glucoside derived from black soybeans ameliorate type 2 diabetes through the induction of differentiation of preadipocytes into smaller and insulinsensitive adipocytes. *The Journal of Nutritional Biochemistry*. 2015;26(8):860–867. https://doi.org/10.1016/ j.jnutbio.2015.03.006.
- Xu L, Choi TH, Kim S, et al. Anthocyanins from black soybean seed coat enhance wound healing. *Annals of Plastic Surgery*. 2013. https://doi.org/10.1097/SAP.0b013e31824ca62b.
- Mueller M, Hobiger S, Jungbauer A. Anti-inflammatory activity of extracts from fruits, herbs and spices. *Food Chemistry*. 2010. https://doi.org/10.1016/j.foodchem.2010.03.041.
- 52. Lin TK, Zhong L, Santiago JL. Anti-inflammatory and skin barrier repair effects of topical application of some plant oils. *International Journal of Molecular Sciences*. 2018. https://doi.org/10.3390/ijms19010070.
- Nizamutdinova IT, Jin YC, Chung J, et al. The anti-diabetic effect of anthocyanins in streptozotocin-induced diabetic rats through glucose transporter 4 regulation and prevention of insulin resistance and pancreatic apoptosis. Molecular Nutrition & Food Research. 2009. https://doi.org/10.1002/mnfr.200800526.
- Kim SW, Sohn DW, Bae WJ, Kim HS, Kim SW. The Anti-inflammatory and antifibrosis effects of anthocyanin extracted from black soybean on a peyronie disease rat model. *Urology*. 2014;84(5):1112–1116. https:// doi.org/10.1016/j.urology.2014.06.026.
- Ko K-P, Park SK, Yang JJ, et al. Intake of soy products and other foods and gastric cancer risk: a prospective study. *Journal of Epidemiology*. 2013. https://doi.org/10.2188/jea.je20120232.
- De Pascual-Teresa S, Sanchez-Ballesta MT. Anthocyanins: from plant to health. *Phytochemistry Reviews*. 2008. https://doi.org/10.1007/s11101-007-9074-0.

158

References

- Do MH, Lee SS, Jung PJ, Lee MH. Intake of fruits, vegetables, and soy foods in relation to breast cancer risk in Korean women: a case-control study. Nutrition and Cancer. 2007. https://doi.org/10.1080/01635580701268063.
- 58. Kim Y-H, Kim DS, Woo SS, et al. Antioxidant activity and cytotoxicity on human cancer cells of anthocynanin extraction from black soybean. *Korean Journal of Crop Science*. 2008;53(4):407–412.
- Tsoyi K, Park H, Fau Kim YM, Kim Y, Fau Chung JI, et al. Anthocyanins from black soybean seed coats inhibit UVB-induced inflammatory. *Journal of Agricultural and Food Chemistry*. 2008;56(19):8969–8974.
- Gorrini C, Harris IS, Mak TW. Modulation of oxidative stress as an anticancer strategy. *Nature Reviews Drug Discovery*. 2013. https://doi.org/10.1038/nrd4002.
- Jang H, Ha US, Kim SJ, Yoon BI, Han DS, Yuk SM, Kim SW. Anthocyanin extracted from black soybean reduces prostate weight and promotes apoptosis in the prostatic hyperplasia-induced rat model. *Journal of agricultural and food chemistry*. 2010;58(24):12686–12691. https://doi.org/10.1021/jf102688g.
- Wu HJ, Deng JC, Yang CQ, Zhang J, Zhang Q, Wang XC, Yang F, Yang WY, Liu J. Metabolite profiling of isoflavones and anthocyanins in black soybean [Glycine max (L.) Merr.] seeds by HPLC-MS and geographical differentiation analysis in Southwest China. *Analytical Methods*. 2017;9(5):792–802.
- Kalušević A, Lević S, Čalija B, Pantić M, Belović M, Pavlović V, Bugarski B, Milić J, Žilić S, Nedović V. Microencapsulation of anthocyanin-rich black soybean coat extract by spray drying using maltodextrin, gum Arabic and skimmed milk powder. *Journal of microencapsulation*. 2017;34(5):475–487. https://doi.org/10.1080/ 02652048.2017.1354939.
- Ryu D, Koh E. Application of response surface methodology to acidified water extraction of black soybeans for improving anthocyanin content, total phenols content and antioxidant activity. *Food chemistry*. 2018;261:260–266. https://doi.org/10.1016/j.foodchem.2018.04.061.
- Xie Y, Zhu X, Li Y, Wang C. Analysis of the ph-dependent fe (iii) ion chelating activity of anthocyanin extracted from black soybean [glycine max (l.) merr.] coats. *Journal of agricultural and food chemistry*. 2018;66(5):1131–1139. https://doi.org/10.1021/acs.jafc.7b04719.

This page intentionally left blank