RESEARCH PROJECT

METAL-PHENOLIC NETWORK-COATED RGO FOR MALACHITE GREEN ADSORPTION

Submitted by

Clarissa SucitroNRP. 5203018001Veronika PrilianaNRP. 5203018004

DEPARTMENT OF CHEMICAL ENGINEERING FACULTY OF ENGINEERING WIDYA MANDALA CATHOLIC UNIVERSITY SURABAYA 2022

LETTER OF APPROVAL

Seminar of RESEARCH PROJECT for student with identity below:

Name : Clarissa Sucitro

NRP : 5203018001

has been conducted on 23rd March 2022, therefore the student has fulfilled one of several requirements to obtain **Bachelor of Engineering** degree in **Chemical Engineering** Department, Faculty of Engineering, Widya Mandala Catholic University Surabaya.

LETTER OF APPROVAL

Seminar of **RESEARCH PROJECT** for student with identity below:

Name : Veronika Priliana

NRP : 5203018004

has been conducted on 23rd March 2022, therefore the student has fulfilled one of several requirements to obtain **Bachelor of Engineering** degree in **Chemical Engineering** Department, Faculty of Engineering, Widya Mandala Catholic University Surabaya.

COPY RIGHT AGREEMENT

In order to support the development of science and technology, I am as the student of Widya Mandala Catholic University Surabaya:

Name : Clarissa Sucitro NRP : 5203018001

agree to transfer the copyright of my research project:

Title: Metal-Phenolic Network-Coated RGO for Malachite Green Adsorption

to be published in internet or other media (Digital Library of Widya Mandala Catholic University Surabaya) for academic purposes according to copyright law in Indonesia.

COPY RIGHT AGREEMENT

In order to support the development of science and technology, I am as the student of Widya Mandala Catholic University Surabaya:

Name : Veronika Priliana NRP : 5203018004

agree to transfer the copyright of my research project:

Title:

Metal-Phenolic Network-Coated RGO for Malachite Green Adsorption

to be published in internet or other media (Digital Library of Widya Mandala Catholic University Surabaya) for academic purposes according to copyright law in Indonesia.

LETTER OF DECLARATION

I declare that this research was my own work and does not contain any material that belongs to the others, unless it was stated in the references. Should it is known that this research belongs to others. I aware and accept the consequences that this research cannot be used as a requirement to obtain **Bachelor of Engineering** degree.

Surabaya, 23rd March 2022

LETTER OF DECLARATION

I declare that this research was my own work and does not contain any material that belongs to the others, unless it was stated in the references. Should it is known that this research belongs to others. I aware and accept the consequences that this research cannot be used as a requirement to obtain **Bachelor of Engineering** degree.

Surabaya, 23rd March 2022

CONTENTS

LETTER OF APPROVAL	ii
COPY RIGHT AGREEMENT	iv
LETTER OF DECLARATION	vi
CONTENTS	viii
LIST OF FIGURES	ix
LIST OF TABLES	X
PREFACE	xi
ABSTRACT	xii
I. INTRODUCTION	1
I.1. Background	1
I.2. Objectives	3
I.3. Problem Limitations	4
II. LITERATURE REVIEW	5
III. MATERIALS AND METHODS	14
IV. RESULTS AND DISCUSSION	
V. CONCLUSIONS AND SUGGESTIONS	41
REFERENCES	43
APPENDIX A	53
APPENDIX B	57
APPENDIX C	62

LIST OF FIGURES

Figure II.1. Structural Changes of GO to RGO	6
Figure II.2. The mechanism of green reduction of GO	7
Figure II.3. Scheme TA-Fe Films Covered GO Sheet	12
Figure IV.1. Mechanism of MPN/RGO Preparation by (a) Method I and (b)
Method II	22
Figure IV.2. The Color Change during MPN/RGO Preparation	23
Figure IV.3. Adsorption Performances of GO, MPN/GO, RGO, and	
MPN/RGO	24
Figure IV.4. % Removal of Malachite Green Adsorbed on MPN/RGO	
Prepared from Different Ratio of GO:Extract (v/v)	25
Figure IV.5. The Color Change of MG Solution Before and After	
Adsorption using MPN/RGO	26
Figure IV.6. % Removal of Malachite Green Adsorbed on MPN/RGO	
Prepared from Different pH	27
Figure IV.7. The Interaction between The MPN/RGO Surface is Positivel	y
and Negatively Charged with The Positively Charged Adsorbate a	t
The pH Value Below and Above The pH _{pzc}	28
Figure IV.8. Value of pH _{pzc} MPN/RGO 1:0.125	28
Figure IV.9. SEM for MPN/RGO Method I (a) and Method II (b)	29
Figure IV.10. FTIR Spectra for GO, MPN/RGO Method I, and MPN/RGO	О
Method II	31
Figure IV.11. Adsorption Mechanism of MG by MPN/RGO (a) Method I	
and (b) Method II	32
Figure IV.12. Adsorption Kinetics of MPN/RGO 1:0.125 Method I Pseud	lo-
first Order (a), Method I Pseudo-second Order (b), Method II	
Pseudo-first Order (c), Method II Pseudo-second Order (d), Metho	od I
Intraparticle Diffusion (e), and Method II Intraparticle Diffusion (f	i),
	34
Figure IV.13. Isotherm Adsorption of MPN/RGO 1:0.125 Method I	
Langmuir Model (a), Method I Freundlich Model (b), Method II	
Langmuir Model (c), and Method II Freundlich Model (d)	37
Figure B.1. Raw Curve of Gallic Acid Standard Solution	59
Figure C.1. Raw Curve of Malachite Green Standard Solution	63
Figure C.2. Adsorption Thermodynamics of MPN/RGO Method I onto M	G
	75
Figure C.3. Adsorption Thermodynamics of MPN/RGO Method II onto M	ЛG
	77

LIST OF TABLES

Table II.1. The adsorption capacity of RGO prepared from GO reduction
using plant extracts
Table II.2. Research related to the application of GO-MPN11
Table IV.1. EDX Analysis for MPN/RGO
Table IV.2. Parameters of The Kinetic Model for MG Adsorption onto
MPN/RGO 1:0.125
Table IV.3. Parameters of The Langmuir and Freundlich Isotherm Model
for MG Adsorption onto MPN/RGO 1:0.125
Table IV.4. Thermodynamics Parameter for MG adsorption onto
MPN/RGO
Table A.1. Preparation of Gallic Acid Standard Solution
Table A.2. Preparation of Malachite Green Standard Solution55
Table B.1. Data Calculation of TPC61
Table C.1. Adsorption Performance of GO, MPN/GO, RGO, and
L
MPN/RGO

PREFACE

Thank God almighty because for His grace and grace, the author was able to complete the Research Project and prepare his report well. The purpose of this thesis is to meet the requirements in obtaining a Bachelor of Engineering degree in Chemical Engineering Department, Faculty of Engineering, Widya Mandala Catholic University Surabaya.

The preparation of this Thesis Report can be completed due to support from many parties so that the author expresses his deepest gratitude to:

- Ir. Wenny Irawaty, Ph.D., IPM., ASEAN Eng. and Ir. Shella Permatasari Santoso, Ph.D., IPM. as a principal supervisor and cosupervisor who has taken time, energy, and thoughts in providing direction, guidance, and suggestion.
- Ir. Maria Yuliana, Ph.D., IPM. and Ir. Aning Ayucitra, M.Eng.Sc., Ph.D., IPM., ASEAN Eng. as committees who have given suggestion and direction during the final thesis report.
- All lecturers and staff of the Department of Chemical Engineering, Faculty of Engineering, Widya Mandala Catholic University Surabaya who have indirectly assisted us in completing the final thesis report.
- 4. All parties who have provided assistance either directly or indirectly to the author until the completion of this final thesis report.

Finally, the author expects criticism and suggestions for the refinement of this practical work report. The author also hopes that this final thesis report can be useful for readers.

Surabaya, 23rd March 2022

Author

ABSTRACT

Malachite green (MG) is one of dyes commonly found in wastewater of textile industries. Since the presence of MG is harmful for living organisms. Adsorption is considered as the most method widely investigated since the process is simple and brings advantageous in term of its applicability. Composite of MPN (metal-phenolic network)/RGO (reduced graphene oxide) has been selected as adsorbent to adsorb MG. The aims of the study were to study the preparation of MPN/RGO, to determine the adsorption capacity of MPN/RGO toward MG dye as the selected adsorbate, and to investigate the kinetic, isotherm, and thermodynamic study for MG adsorption over MPN/RGO. Kaffir lime peels extract was used as the reducing agent of GO. MPN/RGO itself was prepared by two different methods by changing the alter of chemicals added during the preparation. In method I, RGO was prepared first, followed by coating it with MPN. In method II, MPN was firstly coated on GO, then MPN-coated GO was reduced by kaffir lime peels extract. SEM-EDX analysis showed that the % atomic weight of O and Fe in MPN/RGO method I was lower than in MPN/RGO method II. FTIR analysis shows that MPN/RGO method I losses hydroxyl, alkoxy, and epoxy functional groups, indicating the successful of reduction process. Whilst on the surface of MPN/RGO indicates part of these groups are still bound which means the GO reduction process is occurred partially. However, the adsorption study shows both adsorbent performed similar achievement by removing around 95% of dye for the same adsorption conditions. The adsorption kinetic were also studied and pseudo-second order adsorption phenomena was confirmed. The intraparticle diffusion model shows that the adsorption process is controlled by surface adsorption. The adsorption capacity based on the Langmuir isotherm for MPN/RGO method I and II are 349 and 360 mg/g, respectively. Thermodynamics approach for MG adsorption over MPN/RGO suggests that MG adsorption occurs spontaneously and endothermic. The recyclability of MPN/RGO sample is interesting to be further investigated to seek a candidate adsorbent applied in textile-based industries.