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A B S T R A C T

Background and aims: Meals with high protein and fiber could reduce weight and improve diabetes risk factors. 
Isomalto-oligosaccharide (IMO), a form of dietary fiber, could induce the afferent signal that causes appetite 
suppression. However, the direct effect of fiber supplementation in the form of IMO combined with a high- 
protein diet (HPF) on those parameters is still unknown. This study aims to investigate the effect of HPF on 
anthropometric parameters and blood glucose regulation of healthy subjects.   

Methods: Thirteen healthy subjects were given a hypocaloric high protein diet (HPD) mixed with their prepared 
meals for two weeks. Followed by the HPF diet for another two weeks. Their anthropometric parameters, such as 
body composition (total body weight, body fat percentage, and fat-free mass), BMI and waist circumference, and 
fasting plasma glucose, were measured. 
Results: Compared to pre-intervention, HPF could significantly (p ≤ 0.004) reduce the anthropometric param
eters and fasting plasma glucose. Compared to HPD, HPF could significantly (p ≤ 0.005) reduce more total body 
weight, body fat percentage, and BMI. In addition, HPF could induce more satiety than HPD (higher VAS score). 
Conclusion: HPF could improve the subject’s anthropometric parameters which is obviously beneficial in pre
venting the risk of developing diabetes.   

1. Introduction

The prevalence of overweight and obesity is rapidly increasing in
every region worldwide. People who are overweight and obese have a 
higher risk of suffering from metabolic diseases such as type 2 diabetes 
mellitus (T2DM) and cardiovascular diseases (CVD) [1]. Many people in 
the last decade have widely practiced high protein diets (HPD) as a 
means to reduce the risk of metabolic diseases. Nevertheless, despite 
their popularity, the result of recent research on HPD on several 

anthropometric and metabolic parameters showed only slight benefit 
[2]. HPD could reduce total body weight while maintaining or 
increasing muscle mass [3]. 

Combining HPD with high dietary fiber (DF) can be a reasonable 
approach. DF has played an important role in the human diet since 
prehistoric times, such as maintaining energy balance [4,5], improving 
cardiometabolic health [5–7], improving insulin sensitivity [8], pre
venting cancer [9,10], and promoting optimized immune and inflam
matory signaling required for human health and weight control [11]. 
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Daily intake of DF could also improve glycemic response and lower the 
risk of diabetes by inhibiting the digestion and absorption of metabo
lizable energy in the gastrointestinal tract, maintaining satiety, and 
reducing caloric intake [12,13]. Therefore, the current recommended 
dietary fiber intake is around 25–35 g per day [14]. DF is defined 
basically as a carbohydrate with three or more monomeric units, which 
cannot be hydrolyzed by the endogenous enzymes of the human small 
intestine, including naturally occurring non-starch polysaccharides 
(NSP) and oligosaccharides found in food, isolated from food raw ma
terial, and synthetic forms. Because the human small intestine cannot 
hydrolyze it, it can pass unchanged into the colon, where it will be 
digested or fermented by the colonic microbiota [15]. 

Nevertheless, DF intake is still below the recommended level in many 
countries [14,16,17]. Low DF intake is associated with a low intake of 
fruits, vegetables, or whole grains, as the natural source of dietary fiber 
[18]. To overcome this problem, DF in the form of a food supplement 
may be used to augment a low-DF diet. Isomalto-oligosaccharides (IMO) 
is a novel dietary fiber that is a mixture of α-(1 → 6) and α-(1 → 4)-linked 
glucose oligomers, synthesized by an enzymatic reaction from starch 
[19]. IMO have been widely used in food industries owing to their sta
bilities, low calorigenic, and prebiotic properties. 

Interestingly, there is no publication regarding the effect of IMO- 
based dietary fiber and high protein diet supplement combination on 
anthropometric profile and fasting plasma glucose. The fiber supple
mentation in the form of IMO combined with a high-protein diet (HPF) 
should have a positive synergistic effect on several anthropometric pa
rameters and blood glucose regulation. To answer these hypotheses, we 
conducted a preliminary repeated single-arm clinical trial with HPD, 
followed by HPF intervention in thirteen metabolically healthy adults 
with a body mass index (BMI) of ≥25. The results show that HPF 
significantly improves the subject’s body composition by reducing the 
total body weight, BMI, body fat percentage, and fasting plasma glucose, 
which is obviously beneficial to preventing the risk of developing dia
betes and other metabolic diseases. 

2. Material and methods 

2.1. Subjects 

Thirteen (n = 13) healthy subjects were voluntarily recruited. In
clusion criteria were body mass index (BMI) of ≥25.0, age between 18 
and 50 years old, men or women, normal diet, not pregnant, not under 
any medication, and not having any disease or acute infection. 

2.2. Trial design, intervention, and supplementation 

This experiment adapted a single-arm trial analysis (see Supple
mentary Fig. 1). For the first two weeks, subjects were given hypocaloric 
prepared meals with high protein content but low DF contents (HPD). It 
contains less than 15 g/d of DF and protein content 30–40% of total 
calories. Meal total calorie is 60% of estimated energy requirements 
(EER), which is calculated with the formula developed by Institute of 
Medicine (IOM) [20]. At the end of the first two weeks, waist circum
ference, total body weight, body composition, and fasting plasma 
glucose were measured. After two weeks of washing, all of the subjects 
were given hypocaloric prepared meal (60% of EER) containing high 
protein and high DF (HPF). It contains 25–30-g DF and protein content 
between 30 and 40% of total calories. At the end of the interventions, 
waist circumference, body weight, body composition, and fasting 
plasma glucose were measured again. Half of DF content in food comes 
from occurring natural fiber from fruit, vegetables, and whole grains, 
the other half (50%) come from IMO-based fiber supplement (Fiberc
remeⓇ, PT. Lautan Natural Krimerindo, Mojokerto, Indonesia; detailed 
composition sees Supplementary Table 1) which is added into the pre
pared meal. 

2.3. Body composition measurement and blood sampling 

Body weight, Body Mass Index (BMI), Fat-Free Mass (FFM), and Body 
Fat Percentage (BFP) were measured using Tanita Bioelectrical Imped
ance Analyzer (BIA) from Tanita Corporation (Illinois, USA). Before 
measurement, subjects were instructed not to drink coffee, tea, or 
alcohol and not to do moderate-to-vigorous physical activity. Waist 
circumference (WC) was measured using body girth tape. Capillary 
blood samples were taken for analysis of glucose concentration using the 
FreeStyle Optium glucose monitoring system (Abbot Laboratories, Cal
ifornia, USA) for the fasting plasma glucose (FPG) parameter. The 
measurement of fasting plasma glucose concentration was performed 
twice: [1] in the morning on the first day of dietary intervention (day 1) 
for the pre-intervention group, and [2] in the morning on the final day of 
dietary intervention (day 15) for the post-intervention group. The dif
ference between pre-and-post-groups in the different interventions was 
analyzed separately. 

2.4. Visual analog scale (VAS) 

Visual analog scales (VAS) are reliable tools to evaluate hunger and 
satiety at the point of food consumption [21]. To acquire the VAS-score, 
the subjects completed a defined questionnaire after every meal and 
submitted to the research facility on the next day. This procedure was 
done every day during the dietary intervention period. 

2.5. Calculation of absolute body fat mass, measured fat loss, predicted 
fat loss, and discrepancy of measured-predicted fat loss calculation 

Absolute body fat mass was calculated by multiplying body fat per
centage, which is measured using Tanita Bioelectrical Impedance 
Analyzer, with total body weight in kilograms. Measured fat loss is the 
difference between pre- and post-intervention absolute body fat mass. 
On the other hand, predicted fat loss is calculated by dividing the total 
calorie deficit after two weeks of dietary intervention by 7700, assuming 
that 1 kg of body fat stores 7700 kilocalories of energy [22]. The 
measured-predicted fat loss discrepancy is the difference between 
measured fat loss mentioned above and predicted fat loss. 

2.6. Statistical analysis 

The data were analyzed statistically using paired-samples T-Test 
methods. The data were presented graphically as the mean ± standard 
deviation (SD) using GraphPad Prism™ 5.0 (San Diego, USA). All results 
were interpreted as significant if p < 0.05. 

3. Results 

3.1. Subjects’ characteristics 

All subjects have completed the trial. Their characteristics, which 
consist of age, body weight, body height, body mass index (BMI), sex, 
and estimated energy requirements (EER), are shown in Table 1. 

3.2. HPF intervention could improve anthropometric parameters, 
particularly body fat percentage 

The anthropometric parameter analysis and fasting plasma glucose 
analysis are shown in Fig. 1. In all parameters, no significant difference 
was observed between male and female subjects. Pre-and-post- 
intervention body weight and BMI are presented in Fig. 1A and B, 
respectively. The reduction of body weight, BMI, and percentage of body 
weight reduction are presented in Fig. 1F and G, and Supplementary 
Fig. 1, respectively. A significant reduction of body weight pre-and-post- 
intervention in HPD, from 81.78 ± 4.52 Kg to 80.67 ± 4.47 Kg (p =
0.000) and HPF, from 81.38 ± 4.51 Kg to 79.33 ± 4.45 Kg (p = 0.000) 
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were observed. Nevertheless, the body weight reduction is significantly 
higher in HPF than in HPD (− 2.05 ± 0.27 Kg vs. − 1.11 ± 0.16 Kg, 
p=0.000). There is also a significant reduction in BMI pre-and-post- 
intervention in HPD, from 29.55 ± 1.14 kg/m2 to 29.14 ± 1.12 kg/m2 

(p=0.000) and HPF, from 29.40 ± 1.14 kg/m2 to 28.65 ± 1.12 kg/m2 (p 
= 0.000). The reduction in BMI is significantly higher in HPF than in 
HPD (− 0.75 ± 0.10 kg/m2 vs. − 0.41 ± 0.06 kg/m2, p=0.0002). Body 
weight reduction in HPF is 2.55 ± 0.35% from pre-intervention body 
weight, significantly higher than body weight reduction in HPD (2.55 ±
0.35% vs. 1.35 ± 0.22%, p = 0.000). 

Pre-and-post-intervention WCs between different experimental 
groups were presented in Fig. 1C. There is a significant reduction of 
waist circumference pre-and-post-intervention in HPD, from 102.18 ±
3.36 cm to 99.05 ± 3.10 cm (p = 0.000) and HPF, from 100.59 ± 3.82 
cm to 96.59 ± 3.62 cm (p = 0.000). The WC reduction between different 
dietary intervention was presented in Fig. 1H. There is no significant 

difference in the reduction of waist circumference between different 
experimental groups. 

Pre-and-post-intervention BFPs between different experiment groups 
were presented in Fig. 1D. There is a significant reduction of BFP pre- 
and-post-intervention in HPD, from 33.66 ± 1.32% to 33.24 ± 1.29% 
(p = 0.019) and HPF, from 33.52 ± 1.26% to 32.65 ± 1.30% (p =
0.0003). The BFP reduction between different dietary intervention was 
presented in Fig. 1I. The reduction of BFP in HPF is significantly higher 
than in HPD (− 0.88 ± 0.15% vs. − 0.42 ± 0.18%, p = 0.005). 

Pre-and-post-intervention FFM between different experimental 
groups were presented in Fig. 1E. There is a significant reduction of FFM 
post-intervention in HPF compared to its pre-intervention, from 51.51 
± 3.40 Kg to 50.77 ± 3.36 Kg (p = 0.000). The muscle reduction be
tween different dietary intervention was presented in Fig. 1J. The 
reduction of FFM in HPF group is significantly higher than in HPD group 
(− 0.74 ± 0.11 Kg vs. − 0.22 ± 0.12 Kg, p=0.002). 

3.3. HPF intervention could induce fasting plasma glucose (FPG) 
reduction 

Pre-and-post-intervention FPG between different experimental 
groups were presented in Fig. 2A. There is a significant reduction of FPG 
pre-and-post-intervention in HPF, from 90.38 ± 3.36 mg/dL to 82.54 ±
1.93 mg/dL (p = 0.004). The reduction of FPG between different dietary 
intervention was presented in Fig. 2B. There is no significant difference 
in FPG reduction between different experiment groups. 

3.4. HPF intervention could increase the satiety of test subjects 

The visual analog scale (VAS), which indicates a subjective feeling of 
satiety, was analyzed daily during the dietary intervention period. The 
VAS mean of each dietary intervention were presented in Fig. 1N. VAS 
score in HPF group is significantly higher than in HPD group (9.23 ±
0.17 vs. 8.23 ± 0.23, p=0.002) (Fig. 3). There is no significant difference 

Table 1 
Subjects characteristics.  

Characterics Mean (Value ± SD) 

Male Female All 

Total samples 6 7 13 
Age (years) 32.00 ± 4.05 28.00 ± 3.27 29.85 ± 4.06 
Body weight (Kg) 96.7 ± 10.29 69.00 ± 5.46 81.78 ± 4.52 
Body height (cm) 172.50 ± 6.03 160.14 ± 5.73 165.85 ± 8.52 
Body Mass Index (Kg/m2) 32.54 ± 3.49 26.98 ± 2.67 29.55 ± 4.18 
Waist Circumference (cm) 110.50 ± 6.03 92.20 ± 6.06 98.46 ± 13.06 
Daily calorie intake (60% 

EERa) 
1933.83 ±
184.46 

1360.71 ±
118.13 

1625.23 ±
331.04 

Adult Male EER: 661.8 - 9.53 x Age [y] x Physical Activities x (15.91 x Weight 
[kg]) + 539.6 x Height [m]. 
Adult Female EER: 354.1 - 6.91 x Age [y] x Physical Activities x (9.36 x Weight 
[kg]) + 726 x Height [m]. 
All trial subjects had sedentary activities, their Physical Activities values are 1.0. 

a EER: Estimated Energy Requirements calculated with formula as follows37. 

Fig. 1. Anthropometric parameters improvement after HPD and HPF interventions. 
A–E: Comparison of pre- (black bar) and post-(grey bar) intervention parameters. F–J: Pre-post difference between different dietary intervention: HPD (black bar) and 
HPF (grey bar). The anthropometric parameters are A, F: Body weight analysis; B, G: Body mass index (BMI); C, H: Waist Circumference; D, I Body Fat percentage; E, 
J Fat-Free (Muscle) Mass. 
HPD: High-protein diet, HPF: High-protein and High-Fiber Diet, Statistical symbols for all graphics: *p < 0.05; **p ≤ 0.001 compared to Pre-post intervention (for A- 
E) or to each dietary intervention groups (for F-J). 
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in VAS scores between both sexes. 

3.5. HPF intervention could reduce body fat mass closer to its predicted 
value 

The average of the measured fat loss in HPF is 1.38 ± 0.21 kg, which 
is significantly higher (p = 0.000) than the value in HPD, which is 0.72 
± 0.16 kg (Fig. 4A). There is a discrepancy between measured fat loss 
and predicted fat loss. Predicted fat loss after being corrected by total 
calories from snacking is 1.63 ± 0.09 kg and 2.04 ± 0.12 kg for HPD and 

HPF, respectively. Predicted fat loss is significantly higher than 
measured in both HPD and HPF (p=0.000). The discrepancy between 
measured and predicted weight loss is 50.76 ± 12.28% in HPD, which is 
significantly higher (p = 0.001) than the value in HPF, which is 25.22 ±
12.34% (see Fig. 4B). 

3.6. There is no significant correlation between body weight reduction and 
FFM reduction in HPF intervention 

The reduction in subjects’ body weight is strongly followed by the 
reduction in BFP, both in HPD and HPF (r = 0.691, p = 0.009, and r =
0.770, p = 0.002, respectively). The correlation between body weight 
reduction and BFP reduction in HPD and HPF are presented in Supple
mentary Figs. 2A and 2B, respectively. Nevertheless, there is no signif
icant correlation between body weight reduction and FFM reduction. 
The reduction of FFM does not consistently follow the reduction of body 
weight. 

4. Discussion 

4.1. HPF intervention could improve the anthropometric parameters and 
increases the subject’s live quality 

Due to the fact that diabetes could manifest through the unhealthy 
diet correlated with bad anthropometric parameters, the supplementa
tion of HPF as a novel dietary intervention could significantly improve 
the subject’s anthropometric parameters. Indeed, this hypothesis has 
been confirmed in Fig. 1. Compared to hypocaloric high protein diet 
(HPD), hypocaloric high-protein and fiber diet (HPF) could reduce more 
total body weight, body fat percentage, and BMI (see Fig. 1A–E). 
Additionally, significant differences in total body weight (BW), body fat 
percentage (BFP), and BMI pre-and-post-intervention between different 
dietary intervention was observed (Fig. 1F–J). The waist circumference 
(WC) was also reduced after two weeks in both dietary interventions 
(HPF and HPD), compared to baseline (pre-intervention). Based on the 
fact that WC represents visceral fat [23], this study shows that HPD and 
HPF have a comparable effect in reducing visceral fat, particularly after 
two weeks of continuous intervention. However, WC reduction in HPF 
tends to be higher than HPD. For subjects who have WC within obese 
criteria (WC ≥ 102 cm for males and WC ≥ 88 cm for females), there is a 
WC reduction of as much as 3.15 ± 0.70 cm for HPD and 4.10 ± 0.73 cm 
for HPF. There is no significant difference in WC reduction between HPD 
and HPF in obese subjects based on WC criteria. These comparable re
sults might be ascribed to the short duration of intervention. 

Although the reduction of fat-free mass (FFM) in HPF is also higher 

Fig. 2. Fasting plasma glucose (FPG) reduction in 
HPD and HPF interventions. 
A: Comparison of pre- (black bar) and post-(grey bar) 
intervention parameters. B: Pre-post difference be
tween different dietary intervention: HPD (black bar) 
and HPF (grey bar). 
HPD: High-protein diet, HPF: High-protein and High- 
Fiber Diet, Statistical symbols for all graphics: *p <
0.05; **p ≤ 0.001 compared to Pre-post intervention 
(for A) or to each dietary intervention groups (for B).   

Fig. 3. VAS score in HPD and HPF interventions. 
The satiety index of each intervention was quantified as a visual analogue scale 
(VAS) using a standard questionnaire. HPD: High-protein diet (black bar), HPF: 
High-protein and High-Fiber Diet (grey bar); **p ≤ 0.001. 
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compared to HPD (Fig. 1J), there is no significant correlation between 
FFM and BW reduction in HPD and HPF intervention. These results 
indicate that body weight reduction is not consistently followed by the 
reduction of muscle mass, which is an integral part of FFM. Indeed, 
previous studies showed that the reduction of FFM during a short course 
of hypocaloric dietary intervention is likely attributed to body water 
content [24]. Otherwise, there is a significant and strong correlation 
between the reduction of BFP and BW in HPD and HPF (Supplementary 
Fig. 2). Furthermore, the WC (see Fig. 1C,H) and BFP changes (see 
Fig. 1D and I) strongly indicate that HPF could induce reduction in 
abdominal or visceral adiposity. 

4.2. Role of HPF-intervention in a reduction of the fasting plasma glucose 
(FPG) 

In line to the previous study conducted by Pickard et al. which 
showed that fiber intake could improve FPG [25], our results (see Fig. 2) 
showed that the reduction of fasting plasma glucose (FPG) (7.85 ± 2.68 
mg/dL) after two weeks of intervention caused by HPF tends to be two 
times higher than FPG reduction in HPD (3.62 ± 2.51 mg/dL). The di
etary fiber tends to have an additional effect to a hypocaloric 
high-protein diet on fasting plasma glucose in the short duration of 
intervention and non-diabetic subjects. The plausible explanation for 
these result are mentioned below. 

There is a discrepancy between predicted and measured fat loss after 
two weeks of dietary interventions. Based on the fact that 1 kg of fats 
stores up to 7700 kcal and 40% calorie deficit after 14 days. After being 
corrected by calories intake from snacks, it should induce 1.41 ± 0.08 kg 
and 1.85 ± 0.11 kg for HPD and HPF, respectively. However, the 
measured fat loss in HPD and HPF are 0.72 ± 0.16 kg and 1.38 ± 0.21 
kg, respectively (Fig. 4A). It the discrepancy between predicted and 
measured fat loss in HPD and HPF are 50.76 ± 12.28% and 25.22 ±
12.34%, respectively (Fig. 4B). This discrepancy is most likely caused by 
the fall in resting and non-resting energy expenditure due to the un
derfeeding or hypocaloric diet, and are defined as adaptive thermo
genesis [26]. 

4.3. HPF-intervention could induce fat loss and increase the satiety 

The measured-predicted fat loss discrepancy in HPF is significantly 
lower than HPD. This phenomenon is caused by the lower total calories 
intake from snacking in HPF than HPD. These results supported our 
other observation regarding the increased satiety feeling induced by 
HPF (see Fig. 3, VAS Score). Previous observations showed that IMO 
supplementation could promote the growth of lactobacilli that, leads to 
an increase in short-chain fatty acid (SCFA) production [27–29]. 
Furthermore, SCFA could upregulate the synthesis and secretion of the 
hunger-suppressing or anorexigenic hormones such as leptin, peptide 
YY, and glucagon-like peptide 1 [30,31]. Based on those studies, we 
assume that HPF (which contains IMO) could suppress appetite and 
snacking reduction, as demonstrated in this manuscript. Furthermore, 
HPF might reduce energy harvesting and chronic low-grade inflamma
tion through modulating gut microbiota as a beneficial manifestation of 
IMO-supplementation [29,30]. However, further investigation is 
required to understand the detailed mechanism. A previous study 
revealed that a change in Firmicutes and Bacteriodes ratio (F/B ratio) in 
colonic microbiome was associated with an additional energy harvest of 
150 kcal per day [32]. In addition, SCFA produced by IMO fermentation 
could, in principle, improve intestinal barrier integrity, reducing LPS 
level in blood circulation [29,33,34]. Those previous studies might 
explain the reduction of fasting plasma glucose in HPF, which tends to 
be higher than that in HPD [35]. 

5. Conclusions 

This study observed that IMO-based dietary fiber supplementation 
combined with a hypocaloric high-protein diet could increase satiety, 
induce weight loss, reduce body fat percentage, reduce peripheral 
adiposity, and improve the subject’s body composition and fasting 
plasma glucose better than hypocaloric high-protein diet alone. This is 
obviously beneficial as a potential diet supplement to prevent the risk of 
developing diabetes and other metabolic diseases. 

Fig. 4. Measured fat loss and measured-predicted fat loss discrepancy in HPD and HPF interventions. 
A: Comparison of measured fat loss. B: Comparison of discrepancy between predicted and measured fat loss (in percentage). 
HPD: High-protein diet (black bar), HPF: High-protein and High-Fiber Diet (grey bar); *p < 0.05; ***p ≤ 0.000. 
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