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To enhance the porosity and accessibility, a novel drug carrier, the hollow core zeolitic-imidazolate
framework-8 (HZIF-8), is designed using polystyrene as a hard template to sequentially load and
release 5-fluorouracil (FU). HZIF-8 is signified by a large surface area and pore volume, reaching
17271 m?/g and 0.99 cm?/g, respectively. The obtained HZIF-8 exhibits rhombic dodecahedron
morphology with a uniform particle size of 450 nm. The integrated hollow core is observed at ca. 180 nm.
Evaluation of the FU encapsulation behavior in HZIF-8 nanospheres is demonstrated via the adsorption
kinetics, isotherm, and thermodynamic studies. The maximum FU uptake is monitored at 40 °C with the
Hollow ZIF-8 loading capacity of 161.9 mg/g. This study suggests that the FU uptake follows the pseudo-second-order
Drug delivery system law and multilayer mechanism. The governing mechanism is chemical binding in its first layer and
ZIF-8 physical interaction in the upper layers. The release study of FU from FU-loaded HZIF-8 shows that the
cumulative release at pH 5.5 (92.03%) is four times higher than that at pH 7.4 (23.31%), indicating a
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stimulus-responsive release mechanism where pH is required as an internal stimulus factor.
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1. Introduction

5-Fluorouracil (FU) is classified as a cytotoxic drug and is mainly
used for the treatment of breast, head and neck, colorectal, stom-
ach, skin, and pancreatic cancers [1]. This drug is commonly applied
intravenously and works by interfering with the growth of DNA and
RNA in the cancer cells, causing incomplete cell growth and pre-
venting these cells from proliferating [2]. During the application,
most cancer drugs, including FU, require a suitable drug delivery
system (DDS) to effectively treat the tumors. DDS can be employed
by loading the drug into a nano-sized carrier, where this carrier
helps to (1) control the release of the drug into the systemic cir-
culation and tumor sites, (2) improve the selectivity, effectiveness,
and safety of the drug administration [3,4]. For a successful DDS,
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two critical aspects must be owned by the drug carrier, i.e. pore
accessibility and responsiveness to pH.

Porous metal-organic frameworks (MOFs) are the new class of
nanoporous materials consisting of multiple metal ions and poly-
functional organic ligands [5]. They have been widely employed in
many applications, namely drug delivery, gas storage, separation,
and catalysis [6,7], due to their ultra-high surface area and pore
volume [8,9], low densities, well-defined pores [10,11], tunable
functionalities, diverse structures [12,13], high stability [14], tena-
bility in various conditions, and facile modification [15]. MOFs also
possess excellent biodegradability and low cytotoxicity, which
rendered this material the ideal candidate for hosting drug mate-
rials [16,17]. However, to date, significant progress has been made
mainly in the design and fabrication of nanoscale and microporous
MOFs [18—20]. While MOFs generally have adequate pore size (up
to 6 nm) to load most small-molecule cancer drugs, including FU,
many studies strive to increase the drug intake into the carrier
and reduce the intensity of the drug administration, which is
important to lower down the side-effects and resulting complica-
tions [21].
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As pore accessibility of the drug carriers is classified as the
governing factor for a successful DDS, MOFs with integrated pores
certainly provide a higher accessibility for the drug molecules to
diffuse in and out from the materials [18]. Few approaches have
been conducted to prepare this type of MOF; one of them is to
utilize polymer nanoparticles as a hard template to create a rattle-
like core inside MOFs. The removal of the hard template through
core etching using dimethylformamide (DMF) produces an inte-
grated pore framework (hollow core) inside MOFs [12] and opens
additional surface area that is highly accessible. This modification is
expected to increase the drug's effectiveness and accessibility.

Of several available MOF structures, zeolitic-imidazolate
framework-8 (ZIF-8) is selected due to its (1) exceptional chemical
and thermal stability [3,22,23], (2) sodalite topology which is easy
for the fabrication of hollow structure [12], (3) modifiable pore
volume and surface area [24,25], and (4) sensitivity to pH. Kaur
etal. (2017) studied that the mercaptopurine drug loaded into ZIF-8
nanoparticles had a release time of 10 h and seven days, respec-
tively, at a pH of 5.5 and 7.4 [3]. This shows that ZIF-8 forms a closed
conformation at physiological pH (pH = 7.4) and opens its
confinement at lower pH values. As the pH of the cancerous
extracellular environment is at 5—6, we consider ZIF-8, in particular
hollow ZIF-8 (HZIF-8), as a suitable carrier for cancer drugs. In this
study, polystyrene (PS) is used as the hard template to ensure the
formation of hollow-core structure and the uniformity of particle
size.

In the present study, we investigate the potential application of
HZIF-8 to increase the loading capacity and accessibility of FU and
promote the release of FU. The loading behavior of FU into HZIF-8 is
evaluated at various temperatures (T, K), and the loaded mass of
HZIF-8 (m, g), and elucidated using the kinetic, isotherm, and
thermodynamic studies. The FU release profile is also implemented
and studied at pH 5.5 and 7.4 to prove its responsiveness to pH.

2. Materials and methods
2.1. Materials

Potassium persulfate (K3S,0g, CAS No. 7727-21-1, >99.0% pu-
rity), styrene (CgHsCHCH;, CAS No. 100-42-5, >99.0% purity),
methacrylic acid (C4HgO,, CAS No. 79-41-4, >99.0% purity), zinc
nitrate hexahydrate (Zn(NOs3),.6H20, CAS No. 10196-18-6, >99.0%
purity), 2-methylimidazole (Hmim, C4HgN,, CAS No. 693-98-1,
99.0% purity), DMF (HCON(CH3),, CAS No. 68-12-2, >99.8% purity),
methanol (CH30H, CAS No. 67-56-1, >99.8% purity), 5-FU
(C4H3FN,0,, CAS No. 51-21-8, >99.0% purity), phosphate buffer
saline (PBS), hydrochloric acid (HCl, CAS No. 7647-01-0, >37.0%
purity), and sodium hydroxide (NaOH, CAS No. 1310-73-2, >97.0%
purity) are purchased from Sigma Aldrich (Germany) in analytical
grade and used without further purification.

2.2. Preparation of PS template

Potassium persulfate solution is prepared by dissolving
0.2 g K,S,0g in 160 mL deionized water under continuous stirring
at 300 rpm. Sequentially, styrene (18 mL), and methacrylic acid
(2 mL) are added to the solution. The mixture is then continuously
stirred at 80 °C for 24 h before being freeze-dried at —42 °C and
40 mbar to obtain the PS solid which is used as the template to
fabricate the hollow core of HZIF-8.

2.3. Synthesis of HZIF-8

HZIF-8 is synthesized through three growth cycles of ZIF-8 on
the PS template. For the first growth cycle, three solutions are
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individually prepared, e.g. (A) 0.5 g PS dispersed in 15 mL methanol,
(B) zinc nitrate solution in methanol (2.5% w/v, 40 mL), and (C)
Hmim solution in methanol (5.5% w/v, 40 mL). Initially, solution B is
added to the PS suspension (A) and stirred at 300 rpm for 10 min.
Then, solution Cis added dropwise to the mixture; the precipitation
occurs in this step. The mixture is continuously stirred at room
temperature for 4 h and followed by 10-min heating at 60 °C. The
PS@ZIF-8 solids are collected by centrifugation at 6000 rpm for
5 min, washed twice with methanol, and oven-dried at 60 °C. The
second and third growth cycles are carried out using the same
procedures to provide a robust HZIF-8 shell structure. To remove
the PS template, the dried PS@ZIF-8 solids are immersed in 50 mL
DMF for 6 h at room temperature under continuous stirring. The
remaining solids are separated from the supernatant by centrifu-
gation, washed twice with methanol, and dried at 60 °C to obtain
HZIF-8 particles.

2.4. Characterizations

HZIF-8 is characterized by scanning electron microscopy-energy
dispersive X-Ray spectroscopy (SEM-EDX), transmission electron
microscopy (TEM), X-ray powder diffraction (XRD), and nitrogen
(N3) sorption. The SEM-EDX images are acquired using a JEOL JSM-
6500 F (Jeol Ltd., Japan) at an accelerating voltage of 15 kV and a
working distance of 10.6 mm, while the TEM analysis is conducted
using JEOL JEM-2100 (Jeol Ltd., Japan) at 200 kV. The crystal
structure of HZIF-8 is presented by XRD analysis within the 20
range of 5—50° using an X'PERT Panalytical Pro X-ray diffractom-
eter (Philips-FEI, Netherlands) with Cu K,; radiation (A = 1.5406 A)
at 40 kV and 30 mA. The N, sorption analysis is performed to
measure the textural properties of HZIF-8, e.g. specific surface area
(Sger), pore volume (V;,), and mean pore diameter (dp). This analysis
is carried out at 77 K using a Micromeritics ASAP 2010 sorption
analyzer (Micromeritics Instrument Corporation, USA) after
degassing the sample for 2 h at 423 K. The point of zero charge
(PHpzc) of HZIF-8 is measured using the drift method at pH = 2—10.

2.5. Adsorption kinetics and isotherm of FU onto HZIF-8

All adsorption experiments are carried out using a 5-mL FU
solution (500 mg/L) for each adsorption batch at neutral pH. The
kinetic study is performed by adding 50 pg HZIF-8 to a series of
adsorption batches, and each batch is collected at different time
intervals, ranging from t = 10 min to t = 24 h, to measure the loaded
amount of FU in HZIF-8 and find the equilibrium time (teq).
Meanwhile, the isotherm study uses various initial FU concentra-
tions (25—500 ppm) with the HZIF-8 loading and adsorption time
of 50 pg and teq, respectively. The concentration of the remaining FU
in the supernatant is measured using Shimadzu ultraviolet-visible
(UV—Vis) spectrophotometer 2600 (Shimadzu, Japan) at a wave-
length (A) of 265.5 nm. This specific wavelength is obtained from
the analysis of UV—Vis spectrum profile of a standard FU solution at
A = 190—900 nm, and refers to the wavelength where FU has its
strongest photon absorption. Three levels of temperature (30, 40,
and 50 °C) are employed to study its influence on drug uptake.

The adsorption capacities at a certain time (q;, mg/g) and at
equilibrium (g, mg/g) are calculated using the following equations.

(G -GV

qt:imc (1)
go =0 (2)
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where the terms of Cy, Ct, and Ce (mg/L) correspond to the initial FU
concentration, the remaining FU concentration at a certain time ¢t,
and the remaining FU concentration at the equilibrium stage in the
solution, respectively. Meanwhile, V (L) and m. (g) are, respectively,
defined as the volume of FU solution and the amount of HZIF-8. The
kinetics and isotherm data are then fitted with several adsorption
models to evaluate the adsorption mechanism. Moreover, the ob-
tained isotherm parameters are used to investigate the adsorption
thermodynamics properties, including the Gibbs free energy (AG®),
enthalpy (AH®), and entropy (AS°).

2.6. Release study of FU from FU-loaded HZIF-8

The release of FU from the FU-loaded HZIF-8 (FU@HZIF-8) is
performed by introducing 200 mg of FU@HZIF-8 into a 5 mL PBS
solution (as the release medium) in the dialysis membrane. The
dialysis membrane containing the mixture above is then immersed
in 500 mL PBS solution at 37 °C under slow constant stirring. Five-
milliliters solution is withdrawn at various release duration, with
the range of 10 min—4 days, and subsequently analyzed using
Shimadzu UV—Vis spectrophotometer 2600 (Shimadzu, Japan) at a
wavelength (1) of 265.5 nm. At the same time, the solution taken
during sampling is replaced with a fresh PBS solution to maintain
the total release volume. The release system is adjusted to pH = 5.5
and pH = 7.4 using 2 N HCl and 1 N NaOH solutions to simulate the
blood plasma condition and to monitor the responsiveness of HZIF-
8 at various pHs.

3. Results and discussion
3.1. Characterization of HZIF-8

Fig. 1a shows the spherical morphology of the PS template,
while the SEM and TEM images of HZIF-8 are presented in
Figs. 1b—c. The PS template has a uniform particle diameter, ranging
from 190 to 200 nm. Meanwhile, HZIF-8 reveals its rhombic do-
decahedron structure with a uniform particle diameter at ca.
450 nm. This morphology is consistent with the previous studies
that use similar solvent and metal to ligand molar ratios [26—28].
Notably, the TEM image (Fig. 1c), along with Fig. 1b (inset), confirms
the hollow structure of HZIF-8 with the size of 180 nm. The shell of
HZIF-8 is estimated at ca. 135 nm and contains the framework of
zinc as the metal node and Hmim as the ligand linker. The open
hollow core, seen in Fig. 1b (inset), might be caused by the template
removal process. The offered interior structure of HZIF-8 has the
potential to be used as a drug carrier, as it provides high accessi-
bility for drugs to enter and attach to its surface.

The elemental composition of HZIF-8, obtained from the EDX
analysis (Fig. 1d), demonstrates the presence of zinc, carbon, oxy-
gen, and nitrogen with the atomic composition of 7.76%, 46.50%,
7.35%, and 38.39%, respectively. This result proves that HZIF-8 is
composed of the elements from its precursors. Binaeian et al.
(2020) reported a similar atomic composition of ZIF-8 [29],
implying that there is no elemental change during the integration
of the hollow core to ZIF-8. The elemental mapping of HZIF-8
(Figs. Te—h) also exhibits the uniform distribution of zinc, carbon,
oxygen, and nitrogen in the material.

The XRD spectra of HZIF-8 and ZIF-8 are presented in Fig. 2a.
Strong crystal peaks at 20 = 7.42° (011), 10.45° (002), 12.77° (112),
14.79° (022), 16.50° (013), and 18.12° (222) are observed for both
materials, which agrees with those reported by Beh et al. (2017)
[27]. With the similar diffraction profiles, it can be concluded that
there is no change in the crystal configuration of ZIF-8 and HZIF-
8. The textural properties of HZIF-8, including Sger, Vp, dp, are
obtained using N; sorption analysis at 1727.1 m?/g, 0.99 cm’/g,
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and 2.30 nm, respectively. These results demonstrate that HZIF-8
indeed has a larger accessibility than the common ZIF-8
(Sger = 1384.1 m?/g, V, = 0.65 cm’[g, and d, = 1.87 nm). This
structure modification has been successfully developed to create
HZIF-8 with better physical properties and greater potential for
enhancing the adsorption ability. The N, adsorption/desorption
profiles (Fig. 2b) of both materials exhibit the type-I isotherm
[30], with the hysteresis model of H4, implying the presence of
slit-shaped pores in the mesoporous size range [31]. The over-
lapping adsorption and desorption curves point to the reversible
sorption process and the independence of adsorption and
desorption systems [32,33]. This proves that HZIF-8 has high
accessibility which is good for a drug carrier material. The pHp,c
of HZIF-8 is obtained at pH = 9.1, which shares a similar value to
the pHp,c of ZIF-8 at 9.3, indicating that integrating the hollow
core to the ZIF-8 does not change the chemical properties of the
material. This result also implies that HZIF-8 has a positive charge
(cationic) at pH lower than pHp,. and is negatively charged at
pH > pHpzc.

3.2. The kinetic study of FU uptake onto HZIF-8

This study employs two empirical kinetic models, pseudo-first-
order (PFO) and pseudo-second-order (PSO), to fit the adsorption
data. Fig. 3 shows that the uptake of FU onto HZIF-8 increases
significantly from the initial condition to the first 10 min, and
gradually rises its capacity until it reaches the equilibrium at 3 h.
The vertically inclined curve observed in the early stage of
adsorption indicates the occurrence of burst adsorption during the
bulk diffusion stage, where the FU molecules are transferred from
the solution to a liquid film on the surface of HZIF-8. The curved line
from t =1 h to t = 3 h denotes the film migratory of FU passing
through the boundary layer of HZIF-8. The third step, indicated by
the plateau area, implies the equilibrium condition of the FU up-
take, where FU diffuses within the HZIF-8 particle into its interior
part [34].

According to the parameters obtained from the non-linear
fitting of PFO and PSO models (Table 1), the R? value of the PSO
model is higher than that of the PFO model, which means that the
FU uptake on HZIF-8 is better expressed through the PSO model.
Based on the kinetic profiles, the equilibrium time is obtained at
3 h, while the highest uptake capacity of FU is monitored at 40 °C
with the value of 161.9 mg/g. The k; constants of the PFO
model at all tested temperatures give very high values, which
indicate extremely fast adsorption to reach the equilibrium. This is
no less consistent with experimental data which showed that the
equilibrium stage is reached at 3 h adsorption time. Meanwhile, the
k, values of the PSO model are inversely proportional to the in-
crease in temperature. This trend is mainly attributed to the ten-
dency of the FU molecules to detach from the surface of HZIF-8 due
to the increasing collision intensity between FU and HZIF-8 at
higher temperatures [35,36]. However, an increase in temperature
will also trigger the accelerated kinetic motion of the adsorbate in
the bulk solution, which promotes the energy barrier to be excee-
ded and encourages the rate of intraparticle diffusion [36]. This
phenomenon is indicated by the escalation of Q. values from 30 °C
to 40 °C presented in Table 1. The rising value of Q. along with
temperature exhibiting the endothermic process can be also
affected by the pore size enlargement, surface activation, or the
emergence of new active sites [37]. Meanwhile, the Q. value is
observed to be lower at 50 °C, which might be caused by the ag-
gregation of adsorbents in the adsorption system which blocks the
active sites of the adsorbent [38].

The better fitted PSO model implies the fact that the rate-
limiting step in this FU uptake is inclined to chemisorption, with
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Fig. 1. SEM images of (a) PS and (b) HZIF-8, (c) TEM image of HZIF-8, (d) EDX of HZIF-8, and (e—h) the elemental mapping of HZIF-8. EDX, energy-dispersive X-ray spectroscopy;

HZIF, hollow zeolitic-imidazolate framework; SEM, scanning electron microscopy.
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Fig. 2. (a) The XRD analysis and (b) N, adsorption/desorption profile of HZIF-8 and ZIF-8. HZIF, hollow zeolitic-imidazolate framework; XRD, X-ray powder diffraction; ZIF, zeolitic-

imidazolate framework.

the involvement of the electron transfer or exchange between
HZIF-8 and FU [39]. The driving force of this migration is predicted
to be the rapid exchange of ions from the surface functional groups
on the adsorbent followed by a diffusion process [40,41]. This result
is also supported by the pHy,. study, where during the adsorption
at pH =7 (pH < pHp,c), the HZIF-8 particles are present in a cationic
form, and associate with the anionic FU via the electrostatic inter-
action. Moreover, HZIF-8 provides abundant active sites, which
underlie the possible m-interaction and hydrogen bonding

mechanism between FU and HZIF-8. The m-interaction occurs
because ZIF-8, as the basic framework of HZIF-8, has two double
bonds and a pair of electrons from nitrogen which are very useful
for interacting with FU via hydrogen bonding [42]. To improve the
understanding of the interactions between HZIF-8 and FU, the
possible binding mechanism is illustrated in Fig. 4. Additionally, the
adsorption capacities of ZIF-8 and HZIF-8 are also compared at the
same operating condition, where the adsorption capacity of HZIF-8
is found at 140.1 mg/g, almost 2-folds higher than that of ZIF-8. This
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Table 1

The computed kinetic parameters of the FU uptake onto HZIF-8.

T (°C) Qexp (Mg/g) PFO model PSO model

kq (1/min) Q. (mg/g) R? ky (g/mg.min) Q. (mg/g) R?
30 139.4 174.7 1327 0.9286 0.164 140.1 0.9856
40 161.9 1115 153.6 0.8491 0.092 157.7 0.9633
50 160.9 133.6 149.8 0.7403 0.061 154.2 0.9507

proves the successful development of HZIF-8 which has greater
potential as a drug carrier.

3.3. Adsorption isotherm study

Fig. 5 shows the isotherm profile of the FU uptake in terms of Q,
vs. Ce; three fitting models have been used to characterize the
adsorption behavior. Supported by the highest R? values, the Bru-
nauer—Emmett—Teller (BET) model provides the best fit to the
adsorption isotherm data compared to the Langmuir and

T

Fl el oa e
}.‘yi‘y‘ >
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Single
framework

Freundlich (Fig. 5a, at 40 °C), and a similar trend is observed at all
temperature levels (Fig. 5b). Based on the R? values, the Freundlich
model conforms to the equilibrium adsorption data better than the
Langmuir. This empirically shows that (1) the adsorbent has a
heterogeneous surface and different adsorption potentials [43] and
(2) a multilayer mechanism occurs in the system [44]. The fitting of
the data to the Freundlich isotherm results in the ng values lower
than unity, emphasizing the heterogeneity of the HZIF-8 surface
where the FU molecules will attach to the stronger binding sites
[45]. This multilayer mechanism is also supported by the fact that
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Fig. 4. Illustrations of HZIF-8 active sites and binding mechanism of FU on HZIF-8. FU, fluorouracil; HZIF, hollow zeolitic-imidazolate framework.
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Fig. 5. The isotherm profile of the FU uptake on HZIF-8 (a) using various isotherm models at 40 °C and (b) using BET model at 30, 40, and 50 °C. BET, Braunauer—Emmett—Teller; FU,

fluorouracil; HZIF, hollow zeolitic-imidazolate framework.

Table 2
The fitted isotherm parameters for the FU uptake onto HZIF-8.
Models Parameters T (°C)
30 40 50
Langmuir K 598 x 107 1.05 x 10°° 456 x 107
Qmax 7.52 x 10° 471 x 10° 1.20 x 10°®
R2 0.9304 0.9289 0.8556
Freundlich Kr 0.082 0.180 0.045
ng 0.784 0.858 0.708
R? 0.9590 0.9408 0.9078
BET ng 10.38 10.92 17.27
Kq 0.007 0.013 0.037
Kur 0.003 0.003 0.003
Quax BET 33.74 32.04 22.55
R2 0.9887 0.9684 0.9618

the data can be depicted very well by the BET model with the
number of layers presented as ng (Table 2). Furthermore, based on
Giles’ classification, the S-shaped uptake profile (as seen in Fig. 5)
indicates the occurrence of cooperative adsorption, where strong
interaction between the adsorbed FU molecules and the new
adsorbate is observed, and therefore, creates more than one layer of
FU on the surface of HZIF-8 [46,47]. This S-class is denoted by the
low uptake rate and low HZIF-8/FU interactions at low initial con-
centrations [48]. However, at high initial concentrations, this pro-
file sees a condensation phenomenon on the surface of HZIF-8
where every active site can be occupied by a large number of FU
molecules [30].

As seen in Table 2, the number of adsorption layers (ng) en-
hances with the increasing temperature and is accompanied by a
decrease in the uptake capacity (Qmaxger) of the first adsorption
layer. The results present that the temperature rise causes FU to be
adsorbed on the upper layers and has the potential to weaken the
interaction between HZIF-8 and FU, which in the cases of drug
delivery, will be beneficial to facilitate the release of the adsorbate.
A large number of layers also prove that HZIF-8 possesses many
active sites to provide multiple physical and chemical interactions.
Referring to ZIF-8 as the basic framework for HZIF-8, there are at
least six main active sites in the framework (Fig. 4), e.g. Hmim site
(AS1), two locations of pore channels (AS2 and AS3), face-centered
site of the pores (AS4), and two other locations near the 11 A cage
sites (AS5 and AS6) [49]. AS1, AS2, and AS3 play a strong role in the
FU uptake, as they are located in the outermost perimeter and have
the first contact with FU. These three active sites promote 7-
interaction between HZIF-8 and FU. Meanwhile, the other active

sites (AS4, AS5, and AS6) provide extra beneficial roles to
strengthen their physical and chemical interactions.

The adsorption mechanism on HZIF-8 can be divided into three
sequential sections as shown in Fig. 5b. First, the adsorption of FU at
lower initial concentration intervals (0—200 mg/L) describes the
diffusion of FU to the outer surface of HZIF-8. Second, the sharply
inclined curve at concentration intervals of 200—550 mg/L in-
dicates the diffusion of FU through the hollow and pores of HZIF-8
occupying every active site on HZIF-8. The presence of hollow and
pores triggers an increase in the diffusion rate of the adsorbate to
the adsorbent so that the adsorption capacity becomes higher [50].
Third, the final adsorption profile at the initial FU concentration
above 550 mg/L shows a horizontal plateau curve, denoting the
equilibrium stage of the adsorption. At high FU concentration, a
strong competition between FU molecules to bind onto HZIF-8
occurs, hence, promoting the resistance to the adsorption process.

3.4. Adsorption thermodynamic study

In this study, the thermodynamic study is established to further
investigate the adsorption mechanism and thermodynamic prop-
erties. Herein, the activation energy (E;), enthalpy change (AHO?),

entropy change (AS?), and Gibbs energy (AG?) are evaluated using
the equations as follows [51—-53],

— Ea
Inky=InAx g (3)
AGY = —RTInK (4)
AS®  AHO
InK= < TRT (5)
K = 1000K. Mg, C° (6)

where k; (g/mg.min) is the equilibrium rate constant obtained from
the PSO model, A is the Arrhenius constant, and E; (k]/mol) is the
activation energy. In addition, K and K., respectively correspond to
the thermodynamic equilibrium constant and the BET constant (Kg;
or Ky;) as the best-fitted model. Meanwhile, Mg and CO are the
molecular weight of FU and the standard FU concentration (1 mol/
L), respectively.

As seen in Fig. 6a, the linear regression provides the E, value of
36.24 kJ/mol, which indicates that the adsorption mechanism is
mainly governed by physical interaction [51]. However, the enthalpy
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properties of the first and upper layers evaluated using the BET
parameters (Fig. 6b and Table 3) are found to be at 66.08 and 3.08 k]/
mol, respectively. This illustrates that two different adsorption
mechanisms occur in the system; the first layer of FU binds chemi-
cally onto the surface of HZIF-8 (20.90 < AH® < 418.40 kJ/mol), while
the upper FU layer interacts with HZIF-8 and adsorbed FU by the
physical means (2.10 < AH® < 20.90 kj/mol) [53]. This verifies why
the adsorption kinetics study is well-fitted to the PSO model but the
magnitude of the activation energy tends to indicate the phys-
isorption mechanism. Moreover, the positive value of AH°
strengthens the finding that this adsorption process is endothermic
[54]. The positive AS? values at both the first (0.274 kJ/mol.K) and
upper (0.059 kJ/mol.K) layers imply the spontaneous adsorption
process and the increasing randomness at the mass-transfer inter-
face [52]. This result shows conformity to the negative AGO values in
all layers and temperature levels, which exposes the same sponta-
neous process with high adsorbent-adsorbate affinity [37].

3.5. Drug release study

To investigate the pH-responsiveness of HZIF-8, the release
study is carried out in the PBS solution at pH = 5.5 and pH = 74,
and the profile is presented in Fig. 7. The drug release profile at
pH = 7.4 signifies a sustained release of FU, where the release rate
of FU is maintained to result in a constant drug concentration in the
medium [55,56]. This type of release may potentially prolong the
therapeutic effect of a drug in the body. Meanwhile, a slow first-
order release profile is observed at pH = 5.5, where the FU
release is rapid in the early stage and continued by a constant
release rate to sustain the required drug supply to the target
[56,57]. This slow first-order release is considered to be more
favorable because the drug consumption can be well-controlled to
provide a stable therapeutic effect over a longer period.

Considering the pH-responsiveness, the release of FU from
FU@HZIF-8 indicates a stimulus-responsive release mechanism
where pH is required as an internal stimulus factor [55]. In Fig. 7,
the cumulative release at pH 5.5 is observed at 92.03%, around 4-
folds higher than that at pH 7.4 (23.31%). It proves the pH-
responsiveness nature of HZIF-8 [58], which is very beneficial in
the anticancer drug (e.g. FU) release. The release mechanism of FU
from FU@HZIF-8 in pH 5.5 can be divided into two main steps
(Fig. 8): (1) initially, the PBS solution begins to enter HZIF-8 and
interacts with the FU molecules on the surface of HZIF-8. The FU
molecules are then desorbed and dissolved into the medium, (2)

Materials Today Chemistry 27 (2023) 101277

Table 3
Thermodynamic properties of the FU uptake on HZIF-8.
BET model T (°C) Properties
AHO (kJ/mol) AS? (k]/mol.K) AGP (kJ/mol)
First layer 30 66.08 0.274 —17.06
40 —19.80
50 —22.54
Upper layer 30 3.08 0.059 —-14.74
40 —15.32
50 —15.91

100

Cumulative release (%)

100
Time (h)

Fig. 7. Cumulative FU release from FU@HZIF-8 at pH 5.5 and 7.4. FU, fluorouracil;
FU@HZIF, fluorouracil-loaded zeolitic-imidazolate framework.

the confined structure created by the metal-ligand interactions is
opened due to the sensitivity of their coordination bonds in the
acidic environment [59,60], hence, releasing more drugs from the
interior part of HZIF-8. The gradual dissociation of this HZIF-8
framework causes FU to be desorbed at a constant rate [61].
Therefore, by using HZIF-8, an improved loading capacity of FU
can be achieved, and at the same time, FU can be effectively
released at a specific pH, which facilitates the targeting of a specific

(a) (b) = First layer
8.4 4 8.5 [ ]
® Upper layer
8.2 8.0
8.0 7.5
& s
£ s
7.8 7.0 4
7.6 6.5
7.4 6.0
s 3
@
¥ T T T T T T T T T
0.00310 0.00315 0.00320 0.00325 0.00330 0.00310 0.00315 0.00320 0.00325 0.00330
1T (K) 1T (K)

Fig. 6. Thermodynamic studies based on (a) PSO constant and (b) BET isotherm constant. BET, Braunauer—Emmett—Teller; PSO, pseudo-second-order.
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Phosphate buffer
saline (pH = 5)
solution

liquid penetrates

material expansion

Fig. 8. The schematic mechanism of FU release from FU@HZIF-8. FU, fluorouracil; FU@HZIF, fluorouracil-loaded zeolitic-imidazolate framework.

organ or part of the human body. This stimuli-responsive mecha-
nism may also improve drug control in the circulatory system of the
body and prevent drug leakage during delivery to the target.
Moreover, this mechanism prevents drug exposure to normal or-
gans or body parts, and thus, potentially reduces the side-effects of
the drug, which are more likely to occur in a burst or free drug
release. Due to these reasons, the well-controlled therapeutic per-
formance can be employed using HZIF-8 to treat various difficult
diseases, such as tumors and cancers [62].

4. Conclusion

In this study, HZIF-8 has been successfully developed as a smart
and promising material for the uptake and release system of FU. The
rhombic dodecahedron HZIF-8 with the particle size of ca. 450 nm
possesses a hollow core with a diameter of 180 nm. The shell of
HZIF-8 is obtained at ca. 135 nm. The surface area and pore volume
of HZIF-8 are found at 1727.1 m?/g and 0.99 cm?/g, respectively.
HZIF-8 gives an excellent performance as a drug carrier for FU; the
maximum uptake capacity of FU by HZIF-8 reaches 161.9 mg/g at
40 °C. The adsorption of FU follows the PSO law and multilayer
mechanism. According to the isotherm study, the first and upper
adsorption layers are, respectively, governed by chemical and
physical interaction. The release study exhibits the pH-responsive
characteristics of HZIF-8 where a higher and better-controlled
release is observed at pH = 5.5 than at pH = 7.4. Therefore, HZIF-
8 can be considered a smart and tunable material that can pro-
vide flexible and controllable properties to be implemented in
various cases of DDS with a specific release mechanism.
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