
 

Far East Journal of Mathematical Sciences (FJMS) 
© 2015 Pushpa Publishing House, Allahabad, India 
Published Online: May 2015 
http://dx.doi.org/10.17654/FJMSMay2015_253_266 
Volume 97, Number 2, 2015, Pages 253-266 ISSN: 0972-0871   

Received: February 22, 2015;  Revised: March 8, 2015;  Accepted: March 13, 2015 
2010 Mathematics Subject Classification: 15A23. 
Keywords and phrases: the symmetrized max plus algebra, linear balanced system, negative 
element. 

Communicated by K. K. Azad 

NECESSARY AND SUFFICIENT CONDITIONS FOR THE 
SOLUTION OF THE LINEAR BALANCED SYSTEMS 

IN THE SYMMETRIZED MAX PLUS ALGEBRA 

Gregoria Ariyanti1, Ari Suparwanto2 and Budi Surodjo2 
1Department of Mathematics Education 
Widya Mandala University 
Madiun, East Java 
Indonesia 
e-mail: ariyanti_gregoria@yahoo.com 

2Department of Mathematics 
Gadjah Mada University 
Sekip Utara BLS 21 
Yogyakarta, Indonesia 
e-mail: ari_suparwanto@ugm.ac.id 

b_surodjo@ugm.ac.id 

Abstract 

The system max plus algebra does not have an additive inverse. 
Therefore, some equations do not have a solution. For example, the 
equation 23 =⊕ x  has no solution since there is no x such that 

( ) .2,3max =x  One way of trying to solve this problem is to extend 

the max plus algebra to a larger system which will include additive 
inverse in the same way that the natural numbers were extended to the 
larger system of integers. The extended system that is larger than max 
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plus means the symmetrized max plus algebra. This paper describes 
the necessary and sufficient condition for the solution of the balanced 
linear system, that is, the linear system over the symmetrized max plus 
algebra. 

It is shown that vector ,⎟
⎠
⎞

⎜
⎝
⎛ ⊗

∇
y

yC
x  where y is arbitrary, is the 

general solution from linear balanced system of ε∇⊗ xA  if and only 

if X that has P
D

Er ⊗⎟
⎠
⎞

⎜
⎝
⎛
ε

ε
 form where D is arbitrary, is any matrix 

satisfying ,AAXA ∇⊗⊗  which .
1

⎟
⎠
⎞

⎜
⎝
⎛

εε
⊗∇

−⊗ CE
PA r  

1. Introduction 

The system max plus algebra does not have an additive inverse. 
Therefore, some equations do not have a solution. For example, the equation 

23 =⊕ x  has no solution since there is no x such that ( ) .2,3max =x  De 

Schutter and De Moor [2] and Singh et al. [5] stated that one way of trying to 
solve this problem is to extend the max plus algebra to a larger system which 
will include additive inverse in the same way that the natural numbers were 
extended to the larger system of integers. Therefore, we have that the system 

( )⊗⊕,,S  is called the symmetrized max plus algebra and B2
ε= RS  with 

B  is an equivalence relation. Malešević et al. [4] stated about the solution         
of a linear system .cAx =  This paper describes the necessary and sufficient 
condition for the solution of the balanced linear system, that is, the linear 
system over the symmetrized max plus algebra. 

1.1. The symmetrized max plus algebra 

Let the set of all real numbers { }ε=ε ∪RR  with −∞=ε :  as the null 

element and 0:=e  as the unit element. For all ,, ε∈ Rba  the operations ⊕  

and ⊗  are defined as follows: 

( )baba ,max=⊕    and   baba +=⊗  

and then, ( )⊗⊕ε ,,R  is called the max plus algebra. 
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Definition 1.1 (De Schutter and De Moor [2] and Kondo [3]). Let =u  

( ),, yx  ( ) ., 2
ε∈= Rzwv  

(a) Two unary operators  and ( )•⋅  are defined as follows: 

( )xyu ,=    and   ( ).uuu ⊕=•  

(b) An element u is called balances with v, denoted by ,vu∇  if 

.wyzx ⊕=⊕  

(c) A relation B  is defined as follows: 

( ) ( )zwyx ,, B  if 
( ) ( )
( ) ( )⎩
⎨
⎧

=

≠≠∇

otherwise.,,,
,andif,,,

zwyx
zwyxzwyx

 

Because B  is an equivalence relation, we have the set of factors =S  

B2
εR  and the system ( )⊗⊕,,S  is called the symmetrized max plus algebra, 

with the operations of addition and multiplication on S  is defined as follows: 

( ) ( ) ( ),,,, dbcadcba ⊕⊕=⊕  

( ) ( ) ( )cbdadbcadcba ⊗⊕⊗⊗⊕⊗=⊕ ,,,  

for ( ) ( ) .,,, S∈dcba  

The system ( )⊗⊕,,S  is a semiring, because ( )⊕,S  is associative, 

( )⊗,S  is associative, and ( )⊗⊕,,S  satisfies both the left and right 

distributive. 

Lemma 1.2 (De Schutter and De Moor [2]). Let ( )⊗⊕,,S  be the 

symmetrized max plus algebra. Then the following statements hold: 

(1) ( )⊗⊕,,S  is commutative. 

(2) An element ( )εε,  is a null element and an absorbent element. 

(3) An element ( )ε,e  is a unit element. 

(4) ( )⊗⊕,,S  is an additively idempotent. 
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The system S  is divided into three classes: 

• ⊕S  consists of all positive elements or 

{( ) }ε
⊕ ∈|ε= RS tt,  with ( ) {( ) }.,, 2 txxtt <|∈=ε εR  

• S  consists of all negative elements or 

{( ) }ε∈|ε= RS tt,  with ( ) {( ) }.,, 2 txtxt <|∈=ε εR  

• •S  consists of all balanced elements or 

{( ) }ε
• ∈|= RS ttt,  with ( ) {( ) }.,, 2

ε∈= Rtttt  

Because ⊕S  isomorphic with ,εR  so it will be shown that for ,ε∈ Ra  

it can be expressed by ( ) ., ⊕∈ε Sa  

Furthermore, it is easy to verify that for ,ε∈ Ra  we have: 

( )ε= ,aa  with ( ) ,, ⊕∈ε Sa  

( ) ( ) ( )aaaa ,,, ε=ε=ε=  with ( ) ,, S∈ε a  

( ) ( ) ( ) ( ) ( ) .,,,,, •• ∈=ε⊕ε=εε== Saaaaaaaaa  

Lemma 1.3. For ,, ε∈ Rba  ( )., baba =  

Proof. 

 ( ) ( ) ( ) ( ) ( ).,,,,, babababa =ε⊕ε=εε=   

Lemma 1.4. For ( ) S∈ba,  with ,, ε∈ Rba  the following statements 

hold: 

(1) If ,ba >  then ( ) ( ).,, ε= aba  

(2) If ,ba <  then ( ) ( ).,, bba ε=  

(3) If ,ba =  then ( ) ( )aaba ,, =  or ( ) ( ).,, bbba =  
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Proof. (1) For ,ba >  we have that .aba =⊕  In other words, ε⊕a  

.ba ⊕=  The result that ( ) ( ).,, ε∇ aba  So it follows that ( ) ( ).,, εaba B  

Therefore, ( ) ( ).,, ε= aba  

(2) For ,ba <  we have that .bba =⊕  In other words, .ε⊕=⊕ bba  

The result that ( ) ( ).,, bba ε∇  So it follows that ( ) ( ).,, bba εB  Therefore, 

( ) ( ).,, bba ε=   

Corollary 1.5. For ,, ε∈ Rba  

⎪
⎩

⎪
⎨

⎧

=

<

>

=
• .,

,,
,,

baifa
baifb
baifa

ba  

Let S  be the symmetrized max plus algebra, n be a positive integer 
greater than 1 and ( )SnM  be the set of all nn ×  matrices over .S  Operations 

⊕  and ⊗  for matrices over the symmetrized max plus algebra are defined: 

,ijijij bacBAC ⊕=⇒⊕=  

.ljil
l

ij bacBAC ⊗=⇒⊗= ⊕  

Zero matrix nn ×  over S  is nε  with ( ) ε=ε ijn  and identity matrix nn ×  

over S  is nE  with 

[ ]
⎩
⎨
⎧

≠ε

=
=

.if,
,if,

ji
jie

E ijn  

Definition 1.6. We say that the matrix ( )SnMA ∈  is invertible over S  

if 

nEBA ∇⊗    and   nEAB ∇⊗  

for any ( ).SnMB ∈  
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The properties of balance relation, i.e., the operator ,∇  are given by the 
following lemma: 

Lemma 1.7 (De Schutter and De Moor [2]). 

(1) .,,, cbabcacba ⊕∇⇔∇∈∀ S  

(2) .,, bababa =⇒∇∈∀ ⊕ SS ∪  

(3) Let ( ).SnMA ∈  The homogeneous linear balance 1×ε∇⊗ nxA  has 

a non-trivial solution in ⊕S  or S  if and only if ( ) .det ε∇A  

1.2. Reduced row echelon form over the symmetrized max plus algebra 

Because the elements of the symmetrized max plus algebra are invertible, 
then it can be developed elementary row operations, that used to manipulate 
linear balanced systems. 

Definition 1.8. The three types of elementary row operations on A matrix 
over the symmetrized max plus algebra are as follows: 

(1) Interchange rows i and j. 

(2) Replace row i by a nonzero multiple of itself ( ).iA⊗α  

(3) Replace row j by a combination of itself plus a multiple of row 
( ).ij AAi ⊗α⊕  

The new balance linear systems that are obtained from the old balance 
linear systems by performing a sequence of elementary row operations have 
the same solution. 

Whenever B can be obtained from A by performing a sequence of 
elementary row operations only, we write ,~ BA row  and we say that A and 

B are row equivalent. In other words, 

BAPBA row ∇⊗⇔~  

for a non-balanced matrix P. 
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Matrix A can be obtained by performing row operation on matrix B 
because every row operation is reversible. In particular, the inverse of any 
row operation is again a row operation of the same type. 

Definition 1.9. An nm ×  matrix E with rows ∗iE  and columns jE∗  is 

said to be in row echelon form provided the following two conditions hold: 

(1) If ∗iE  consists entirely of ε, then all rows below ∗iE  are also entirely 

;ε  i.e., all ε  rows are at the bottom. 

(2) If the first non ε entry in ∗iE  lies in the jth position, then all entries 

below the ith position in columns jEEE ∗∗∗ ...,,, 21  are .ε  

Adding the following conditions to conditions (1) and (2) in Definition 
1.9, we have a matrix E as a reduced row echelon form: 

(1) The leading entry in each nonzero row is e. 

(2) Each leading e is the only nonzero entry in its column. 

A typical structure for a matrix in reduced row echelon form is illustrated 
below: 

.

0
0

0
0

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

εεεεεε
ε∗∗εεε
ε∗∗εεε
∗∗∗εε∗

 

For a matrix A, the symbol AE  denotes the unique reduced row echelon 

form that derived from A by means of row operations. 

The following is an example of the reduced row echelon form obtained 
by using only row operations. 

Example 1.10. Let .
101

01
012

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

ε

εε

ε

=
•

•

A  
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We have a sequence of elementary row operations from A as follows: 

( )( )

( ) ( )

( )

( ) ( )

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

−

εε

−ε−

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

ε

εε

−ε−

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

ε

εε

ε

••

•

•

•

−
•

•

1101
01
210

101
01
210

101
01

012

~
131

~
21 HH  

( )

( ) ( )
( ) ( )

( ) ( )
( )

( ) ⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

−

−εε

−ε−

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

−

−εε

−ε−

•••

•

••

•

−

1101
10
210

1101
10
210

~
032

~
12 HH  

( )

( ) ( )
( )

( ) ( )
.

2010
10
210

~
13

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

−−

−εε

−ε−

•••

•

−H  

We can see that 

( ) ( )
( )

( ) ( )
.

0
0

0

2010
10
210

AE=
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

εε

εε

εε

∇
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

−−

−εε

−ε−

•••

•

 

2. The Main Result 

In this section, we indicate how a technique is used to obtain the 
necessary and sufficient condition for an existence of a general solution of a 
non-homogeneous linear balanced system. 

To show the existence of the solution of the balanced linear system uses 
some of the following theorems: 

Theorem 2.1. The form AAXA ∇⊗⊗  has no unique solution for any 
A. 

If A is an nm ×  non-balanced matrix, then there exists an inverse 
( )1−⊗A  with the property ( ) ( ) .11 EAAAA ∇⊗∇⊗ −⊗−⊗  

It will be shown how to construct the set of all matrices X such that 
.AAXA ∇⊗⊗  The construction of the matrix X such that AAXA ∇⊗⊗  
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for an arbitrary ( )SMA nm×∈  is simplified by transforming A into a 

sequence of elementary row operations, as shown in the following theorem. 
From that process, we have ,~ rrow AA  and any P such that 

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
εε

∇⊗
CE

AP r  (2.1) 

with ( )( ).SrnrMC −×∈  

The following theorems establish the existence of the matrix X such that 
AAXA ∇⊗⊗  and its applications in solving equations. 

Theorem 2.2. Let ( ),SnmMA ×∈  and let ( )SmmMP ×∈  be such that 

 .⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
εε

∇⊗
CE

AP r  (2.2) 

Then for any ( ) ( )( ),SrmrnMD −×−∈  the mn ×  matrix 

 P
D

E
X r ⊗⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
ε

ε
∇  (2.3) 

satisfies .AAXA ∇⊗⊗  

The partitioned matrices in (2.2) and (2.3) must be suitably interpreted in 
case mr =  or .nr =  

Proof. Rewriting (2.2) as 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
εε

⊗∇
−⊗ CE

PA r1
 

it is easily verified that any X given by (2.3) satisfies 

,
11

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
εε

⊗⊗⊗⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ε

ε
⊗⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
εε

⊗∇⊗⊗
−− ⊗⊗ CE

PP
D

ECE
PAXA rrr  

.
11

A
CE

P
CECE

PAXA rrr ∇⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
εε

⊗∇⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
εε

⊗⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
εε

⊗∇⊗⊗
−− ⊗⊗   
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Existence of the matrix X satisfying AAXA ∇⊗⊗  is given by the 
following theorem: 

Theorem 2.3. Let ( ).SnmMA ×∈  A matrix X satisfies AAXA ∇⊗⊗  if 

and only if 

 P
D

E
X r ⊗⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
ε

ε
∇  (2.4) 

for some D and for some nonbalanced P satisfying 

 .⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
εε

∇⊗
CE

AP r  (2.5) 

Proof. (⇐) If (2.5) and (2.4) hold, then X satisfies AAXA ∇⊗⊗  by 
Theorem 2.2. 

(⇒) Let .AAXA ∇⊗⊗  Then both XA ⊗  and AX ⊗  satisfy 

XAXAXA ⊗∇⊗⊗⊗    and   .AXAXAX ⊗∇⊗⊗⊗  

XA ⊗  and AX ⊗  have the same rank as A. Thus, both XA ⊗  and 

AX ⊗  are of the form .⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
εε

CEr  Therefore, there exists nonsingular R such 

that 

.1
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
εε

∇⊗⊗⊗− CE
RXAR r  

Thus, 

,11 AXARAR ⊗⊗⊗∇⊗ −−  

( ) ,111 ARRXARAR ⊗⊗⊗⊗⊗∇⊗ −−−  

.11 AR
CE

AR r ⊗⊗⎟
⎠
⎞

⎜
⎝
⎛

εε
∇⊗ −−  
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It follows that AR ⊗−1  is of the form 

.
11

1
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

εε
⊗∇⇔⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

εε
∇⊗

−−
− rr ECRAECAR  

Let .1−⊗⎟
⎠
⎞

⎜
⎝
⎛

εε
ε

= R
C

P  Then 

.
1

1 ⎟
⎠
⎞

⎜
⎝
⎛

εε
∇⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

εε
⊗⊗⊗⎟

⎠
⎞

⎜
⎝
⎛

εε
ε

∇⊗
−

− CEECRR
C

AP rr  

Consider the matrix .1−⊗ PX  We have 

.11 AXAPPX
CE

PX r ⊗∇⊗⊗⊗∇⎟
⎠
⎞

⎜
⎝
⎛

εε
⊗⊗ −−  

So, .1 ⎟
⎠
⎞

⎜
⎝
⎛

εε
∇⎟
⎠
⎞

⎜
⎝
⎛

εε
⊗⊗ − CECE

PX rr  From the latest equation, it follows that 

⎟
⎠
⎞

⎜
⎝
⎛

εε
⊗⊗ − CE

PX r1  for some D. We have .P
CE

X r ⊗⎟
⎠
⎞

⎜
⎝
⎛

εε
∇   

According to Theorem 2.3, we give the following example: 

Example 2.4. Let .
101

01
012

⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

ε
εε
ε

=
•

•

A  

We have ( )CE
e

e
e

EAAP A 33 =
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

εε
εε
εε

=∇=⊗  with 

( ) ( ) ( ) ( ) ( )( ),211311203213 −−− ⊗⊗⊗⊗= EEEEEP  

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

εε
ε−ε
εε

⊗
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

ε
εε
εε

⊗
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−εε
εε
εε

=
e

e

ee
e

e
e

e
P 1

1
 

( )
.

2

1 ⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

εε
εε
εε−

⊗
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

ε
εε
εε

⊗
e

e
e

e
e
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So, we have 
( )

.
122

1
2

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−−−
ε−ε
εε−

=P  

And, 
( ) ( )

( )
( ) ( )

( ).
210

1
21

3 CE
e

e
e

AP ∇
⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

−−
−εε
−ε−

=⊗
•••

•

 

There is 

( )
( )

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

εεε
−−−
ε−ε
εε−

=
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−−−
ε−ε
εε−

⊗

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

εεε
εε

εε
εε

=⊗⎟
⎠
⎞

⎜
⎝
⎛
ε

=
122

1
2

122
1

2
3

e
e

e

P
E

X  

which satisfies .AAXA ∇⊗⊗  

Theorem 2.5. Let ( ).SnmMA ×∈  If X is any matrix satisfying 

,AAXA ∇⊗⊗  then bxA ∇⊗  has a solution if and only if ,bbXA ∇⊗⊗  
in which case the most general solution is ( ) ,hAXEbXx ⊗⊗⊕⊗=  

where h is arbitrary. 

Proof. 

( )[ ],hAXEbXAxA ⊗⊗⊕⊗⊗=⊗  

( ) ,hAXEAbXAxA ⊗⊗⊗⊕⊗⊗=⊗  

( ) ( )AXAhAbXAxA ⊗⊗⊗⊕⊗⊗=⊗  

( ) .•⊗⊕∇⊗⊗⊕∇⊗ hAbhAhAbh  

Because we have ( ) ,ε∇⊗ •hA  we conclude that .bbxA =ε⊕∇⊗  Hence, 

.bxA ∇⊗   

Corollary 2.6. If X is any matrix satisfying ,AAXA ∇⊗⊗  then 
ε∇⊗ xA  has a solution if and only if the most general solution is =x  

( ) ,hAXE ⊗⊗  where h is arbitrary. 
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Proof. 

( ) hAXAhAhAXEAxA ⊗⊗⊗⊗=⊗⊗⊗=⊗  

.hAhA ⊗⊗=  

Because ( )•⊗=⊗⊗ hAhAhA  and ( ) ,ε∇⊗ •hA  we conclude that 

.ε∇⊗ xA   

Corollary 2.7. Vector ,⎟
⎠
⎞

⎜
⎝
⎛ ⊗

∇
y

yC
x  where y is arbitrary, is the general 

solution from linear balanced system ε∇⊗ xA  if and only if X that has 

P
D

Er ⊗⎟
⎠
⎞

⎜
⎝
⎛
ε

ε
 form, where D is arbitrary, is any matrix satisfying ⊗A  

,AAX ∇⊗  which .
1

⎟
⎠
⎞

⎜
⎝
⎛

εε
⊗∇

−⊗ CE
PA r  

Proof. According to Corollary 2.6, we have 

( ) .
1

h
CE

PP
D

E
EhAXEx rr ⊗⎥⎦

⎤
⎢⎣
⎡

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

εε
⊗⊗⎟

⎠
⎞

⎜
⎝
⎛ ⊗⎟

⎠
⎞

⎜
⎝
⎛
ε

ε
∇⊗⊗=

−⊗  

Furthermore, we obtain 

,h
CE

D
E

Ex rr ⊗⎥⎦
⎤

⎢⎣
⎡

⎟
⎠
⎞

⎜
⎝
⎛

εε
⊗⎟

⎠
⎞

⎜
⎝
⎛
ε

ε
∇  

.h
CE

Ex r ⊗⎥⎦
⎤

⎢⎣
⎡

⎟
⎠
⎞

⎜
⎝
⎛

εε
∇  

If we take ⎟
⎠

⎞
⎜
⎝

⎛
ε

ε
=

−rm

r
E

E
E  and ,⎟

⎠

⎞
⎜
⎝

⎛=
−rm

r
h

h
h  then we obtain that x 

can be presented as the following form: 

,⎟
⎠

⎞
⎜
⎝

⎛⊗⎥⎦

⎤
⎢⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛

εε
⊗⎟
⎠

⎞
⎜
⎝

⎛
ε

ε
∇

−− rm

rr

rm

r
h

hCE
E

E
x  

.⎟
⎠

⎞
⎜
⎝

⎛ ⊗
∇⎟
⎠

⎞
⎜
⎝

⎛⊗⎟
⎠

⎞
⎜
⎝

⎛
ε
ε

∇
−

−

−− rm

rm

rm

r

rm h
hC

h
h

E
C

x  
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We now conclude that ,⎟
⎠
⎞

⎜
⎝
⎛ ⊗

∇
y

yC
x  where y is arbitrary, is the solution of 

.∇⊗ xA   

Example 2.8. According to Example 2.4, because 

( ) ( )
( )

( ) ( )
( ),

210
1
21

3 CE
e

e
e

AP ∇
⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

−−
−εε
−ε−

=⊗
•••

•

 

we have 
( )
( )

( )
.

2
1
2

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−
−
−

=
•

C  Hence, we get that 
( )

.
2
1
2

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−
−
−

=
•

C  If we take ,0=y  

then we obtain 
( )

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

−
−
−

=⎟
⎠
⎞

⎜
⎝
⎛ ⊗

= •

0
2
1
2

y
yC

x  is the solution of .ε∇⊗ xA  
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