

YAYASAN WIDYA MANDALA SURABAYA UNIVERSITAS KATOLIK WIDYA MANDALA SURABAYA

Jl. Dinoyo 42-44 Telp. (031) 5678478, 5682211 Fax. 5610818 Surabaya 60265 Website: http://www.wima.ac.id Email: pr-office@ukwms.ac.id

SURAT TUGAS

Nomor: 3358/WM01/T/2016

Pimpinan Universitas Katolik Widya Mandala Surabaya dengan ini menugaskan :

No.	Nama	NIK	Judul Makalah
03.	D.N. Dian Retno Sari Dewi P., ST., MT.	531.97.0298	Aplication of Optimization Modeling to Derive an Enginering Charactereistics in QFD
04.	Ignatius Jaka Mulyana, STP.,MT.	531.98.0325	Optimization of Cambering Process by Determination of Process Parameter to Improve of Parabolic Leaf Spring

Tugas

Sebagai Pemakalah The 7th International Conference on Operations and

Supply Chain Management (OSCM)

Waktu

Minggu - Rabu, 18 - 21 Desember 2016

Tempat

Centara Grand Beach Resort

Phuket - Thailand

Lain-lain

Biaya diambilkan dari anggaran Jurusan Teknik Industri - Fakultas Teknik

tahun 2016/2017 dengan kode 602.01.2233

Demikian surat tugas ini diterbitkan harap dilaksanakan dengan sebaik-baiknya dan memberikan laporan setelah selesai melaksanakan tugas.

19 Oktober 2016

wa.mr. Rektor

Wakil Rektor I,

Drs. Y.G. Harto Pramono, Ph.D.

NIK. 121.86.0119

TINDASAN:

- Dekan Fakultas Teknik
- Ketua Jurusan Teknik Industri
- Kepala BAU

Certificate of Attendance

This is to certify that

DIAN RETNO SARI DEWI

participated as a presenter in

The 7th International Conference on Operations and Supply Chain Management (OSCM)

December 18-21, 2016 Phuket, Thailand

(Assoc. Prof. Dr. Duangpun Singkarin)

General co-chair Mahidol University Thailand (Prof. Dr. Nyoman Pujawan)

General co-chair Institut Teknologi Sepuluh Nopember

Indonesia

OSCM 2016

Proceedings of the 7th International Conference on Operations and Supply Chain Management (OSCM)

December 18-21, 2016 Phyliet Thalland

Conference Committee

Honorary Chair Jackrit Suthakorn,

Dean: Faculty of Engineering, Mahidol University, Thailand

General Co-Chair : Duangpun Singkarin, Mahidol University, Thailand

Nyoman Pujawan, Institut Teknologi Sepuluh Nopember General Co-Chair:

(ITS), Indonesia

Kamrul Ahsan, RMIT, Australia General Co-Chair:

Waressara Weerawat, Mahidol University, Thailand Program Chair

Program Chair Jirapan Liangrokapart, Mahidol University, Thailand

Program Chair Assadej Vanichchinchai, Mahidol University, Thailand

Organizing Committee

Thanakorn Naenna

Thailand Nakorn Indra-payong Burapha University

Thailand Apichat Sopadang Chiang Mai University

Thailand Chulalongkorn University Parames Chutima

Chulalongkorn University Thailand Sompong Sirisoponsilp

Kasetsart University Thailand Pornthep Anussornnitisarn

Thailand KhonKaen University Cholatip Pongskul

Thailand Kanchana Sethanan KhonKaen University

Thailand KhonKaen University Weerapat Sessomboon

Thailand King Mongkut's University of Technology North Tarathorn Podcharathitikull

Bangkok

Thailand King Mongkut's University of Technology Thonburi Thananya Wasusri

Thailand King Mongkut's University of Technology Thonburi Tuanjai Somboonwiwat

King Mongkut's University of Technology Thonburi Thailand Woranut Koetsinchai

King Mongkut's Institute of Technology Ladkrabang Thailand Walailak Atthirawong

Thailand Mahidol University Phallapa Petison

Thailand Mahidol University Phumin Kirawanich

Thailand Mahidol University Ronnachai Sirovetnukul

Thailand Siradol Siridhara Mahidol University

Thailand Supawadee Kamkliang Mahidol University

Thailand Mahidol University Tawinan Simajaruk

Thailand

Thailand Mahidol University Tuangyot Supeekit

Mahidol University

WasapornTechapeeraparnich	Mahidol University	Thailand
Wirachchaya Chanpuypetch	Mahidol University	Thailand
Nikorn Siriwongpisan	Prince of Songkla University	Thailand
Sakesun Suthummanon	Prince of Songkla University	Thailand
Wanatchapong Kongkaew	Prince of Songkla University	Thailand
Chatchalee Ruktanonchai	PTT Global Chemical Public Company Limited	Thailand
Prachuab Klomjit	Silpakorn University	Thailand
Ninlawan Choomrit	Srinakharinwirot University	Thailand
Jirarat Teeravaraprug	Thammasat University	Thailand
Sittha Jaensirisak	UbonRatchathani University	Thailand
Janya Chanchaichujit	Walailak University	Thailand
International Committee		
Daniel Prajogo	Monash University	Australia
Ferry Jie	RMIT University	Australia
Kamrul Ahsan	RMIT University	Australia
Ruhul Amin Sarker	University of New South Wales	Australia
Hasan Akpolat	University of Technology Sydney	Australia
HimanshuShee	Victoria University	Australia
M. Abdul Hoque	University of Brunei Darussalam	Brunei
Reza Lashkari	University of Windsor	Canada
Hing Kai Chan	The University of Nottingham Ningbo China	China
George Hadjinicola	University of Cyprus	Cyprus
Hartanto Wong	Aarhus University	Denmark
Jyri Vilko	Lappeenranta University of Technology	Finland
Dimitris Folinas	Alexadrion Technological Educational Institute of	Greece
	Thessaloniki	
Sanjay Jharkharia	Indian Institute of Management Kozhikode	India
Bimaraya Metri	International Management Institute New Delhi	India
G.V.R.K.Acharyulu	University of Hyderabad	India
Andi Cakravastia	Bandung Institute of Technology	Indonesia
Suprayogi	Bandung Institute of Technology	Indonesia
TogarSimatupang	Bandung Institute of Technology	Indonesia
M. Marimin	Bogor Agricultural University	Indonesia

The 7th International Conference on Operations and Supply Chain Management 2016, Phuket Thailand

Gede Agus Widyadana	Petra Christian University	Indonesia
Ahmad Rusdiansyah	SepuluhNopember Institute of Technology (ITS)	Indonesia
Budi Santosa	SepuluhNopember Institute of Technology (ITS)	Indonesia
Imam Baihaqi	SepuluhNopember Institute of Technology (ITS)	Indonesia
The Jin Ai	University of Atma Jaya Jogjakarta	Indonesia
Katsuhiko Takahashi	Hiroshima University	Japan
Takashi Irohara	Sophia University	Japan
Yasutaaka Kainuma	Tokyo Metropolitan University	Japan
Kap Hwan Kim	Pusan National University	Korea
Javad Feizabadi	Malaysia Institute for Supply Chain Innovation	Malaysia
T. Ramayah	UniversitiSains Malaysia	Malaysia
Sha'ri Mohd Yusof	UniversitiTeknologi Malaysia	Malaysia
Suhaiza Zailani	University of Malaya	Malaysia
Paul Childerhouse	Massey University	New Zealand
Per Engelseth	Molde University College	Norway
Blanka Tundys	University of Szczecin	Poland
Rajesh Piplani	Nanyang Technological University	Singapore
Violeta Roso	Chalmers University of Technology	Sweden
Anders Segerstedt	Lule University of Technology	Sweden
Hui Ming Wee	Chung Yuan Christian University	Taiwan
Kun-Jeng Wang	National Taiwan University of Science and	Taiwan
	Technology	
Thunyarat Amornpetchkul	National Institute of Development Administration	Thailand
Sakun Boon-Itt	Thammasat University	Thailand
Rene De Koster	Erasmus University	The Netherlands
Armagan Tarim	Hacettepe University	Turkey
Benny Tjahjono	Cranfield University	UK
Yahaya Yusuf	University of Central Lancashire	UK
Ioannis Manikas	University of Greenwich	UK
Petros Ieromonachou	University of Greenwich	UK
Harm-Jan Steenhuis	Hawaii Pacific University	USA
Ajay Das	The City University of New York	USA
Joel Wisner	University of Nevada	USA

CONTENTS

	PAGE
Welcome Speech from Dean, Faculty of Engineering, Mahidol University	X
Conference Committee	xii
Conference Sponsor	XV
Keynote Speaker	xvi
Program Overview	xvii
Session 1 – Rail Transportation	
Using Innovative Solutions in Rail Network Planning and Evaluation Nate Chanchareon	1
The Establishment and Location Analysis of Dry Port: A Case of Southern Thailand Kraisee Komchornrit and Waressara Weerawat	2
Statistical Analyses of Motivations to Participate in A Rail Focused Extra-Curricular Activity and Its Short Terms Personal Impacts Anna Fraszczyk, Dmytro Drobisher and Marin Marinov	14
Session 2 – Current Supply Chain Focus	
Impact of Climate Change on Supply Chain Network: A Systematic Literature Review Hendrik Wurtmann and Abhijeet Ghadge	32
Development of a Disaster Relief Logistics Model Minimizing the Range of Delivery Time	40
Kei Kokaji and Yasutaka Kainuma Cars Evacuation Plan in the Event of Flooding: A Case Study of Urban Hat YaiSongkhla Province	40
Jirasuk Panitchkul, Sakesun Suthummanon, Wanatchapong Kongkaew and Sirirat Suwatcharachaitiwong	49
Demand and Supply Integration: A Case Study of Marché International De Rungis – France Juan Marcelo Gomez, Jennyfer Kuanji, Ahmed Kaouachi and Andreas Ioannides	57
A Distance and Population-Based Location for Thailand's Logistics Hub Assadej Vanichchinchaiand and Songwut Apirakkhit	71

Impacts of ASEAN Open Skies Policy On Air Cargo Industry in Thailand Araya Sakburanapech	78
Understanding Tourist Movement Pattern: Value Chain Approach Putu Giri Artha Kusuma, Senator Nur Bahagia, Lucia Diawati and Myra P. Gunawan	86
Lean Six Sigma Guideline for Made-to-Order Production Industry Yutthaphon Khayankit and Jirapan Liangrokapart	98
The Impact of Culture on Mobile Phone Purchasing: A Comparison between Thai and British Consumers Monthathip Srikes	110
Session 4 – Industry	
Business Process Management Practice for Micro Enterprise in Indonesia Mahendrawathi Er, Nyoman Pujawan and Umi Chotijah	115
Preventive Maintenance Strategies: Literature Review and Directions Ade Supriatna, Moses L. Singgih, Nani Kurniati and Erwin Widodo	127
A Conceptual Model for Supplier Integration and Development in the Thai Automotive Industry Porpan Vachajitpan and Nichakorn Thongplew	140
Building in Quality Through Equipment Maintenance: A New Approach for Managing Production System Nani Kurniati and Yulia Hening	152
Reshaping Business Models for Digital Era in Manufacturing Industries Supply Chains Jukka Hemilä	160
The Estimation of the Cost of Service and Repair of Spare Parts to Support the Warranty Period Valeriana Lukitosari, Suparno, I Nyoman Pujawan, and Basuki Widodo	169
Facility Location Model for Oil and Gas Industry: A Case Study of an Oil and Gas Company in Indonesia Dody Hartanto and Muhammad Fazlurrahman Arief	178
Defect Reduction from Copper in Hole in Printed Circuit Board Wanwisa Duantrakoonsil and Assadej Vanichchinchai	188
The Role of Change Agent in Lean Manufacturing Implementation Norani Nordin, Risyawati Mohamed Ismail and Rohaizah Saad	196

Session 5 - Supply Chain Risk and Uncertainty Risk Mitigation Strategy for Dairy Products in Indonesia Dewanti Anggrahini and Putu Dana Karningsih 205 A Social Network Analysis (SNA) Approach to Manage Supply Chain **Information Risks** Leon Kok Yang Teo, Duy Dang-Pham, and Mathews Nkhoma. 213 Return and Risk Equivalence among Different Supply Chain Contracts Shirsendu Nandi 225 Risk Management for Local Logistics Service Provider Focusing on Outbound Road Freight Transportation Thutchanan Sangwan and Jirapan Liangrokapart 236 Two Risk Assessment and Evaluation Approaches for Critical Logistical Infrastructures Sascha Düerkop and Michael Huth 248 Supply Chain Risk Management and Stakeholder Analysis in Supply Chain: A Conceptual Model Syarifuddin Mabe Parenreng, Nyoman Pujawan and Putu Dana Karningsih 256 Risks and Trust Identification for SMEs Assessment Tawinan Simajaruk and Jirapan Liangrokapart 260 Impact of Pricing Policies on Profit and Revenue of Consumer Product Supply Chain with Uncertain Costs Chatdanai Kaorapapong and Pisal Yenradee 274 Session 6 – Port and Maritime Logistics A Simulation Study for Maritime Inventory Routing Problem with Supply and Transportation Disruptions Nurhadi Siswanto 286 The Latest Seven Years of Maritime Policy: Literature Review and Opportunity for Future Research Pratomo Setyohadi, Ketut Buda Artana, Djauhar Manfaatand, 296 and Raja OloanSaut Gurning Prospects of Nearshoring European Manufacturing Located in China to Russia Yulia Panova and Per Hilletofth 308 Berth Allocation Problem Under Uncertainty: Preliminary Study at Koja **Container Terminal**

Adi Budipriyanto, Budisantoso Wirjodirdjo, Nyoman Pujawan and Saut Gurning.

320

Session 7 – Transport Management

Vehicle Routing Problem for Optimizing Multi Temperature Joint Distribution On Distribution of Perishable Product	
Luki Trihardani	331
Balancing Vehicle Utilization on Capacitated Vehicle Routing Problem with Time Windows Using Simulated Annealing Algorithm David T. Liputra, Victor Suhandi and Rifki Ramdani	344
Freight Forwarder's Capacity Booking: A Conceptual Model Alain Widjanarka, BudisantosoWirjodirdjo, Nyoman Pujawan and Imam Baihaqi	352
Developing Model of Closed Loop Supply Chain Network for Subsidized LPG 3-kgs in East Java-Indonesia Amelia Santoso, JoniartoParung and Dina N. Prayogo	365
	302
The Practice of Business and IT Integration in the Transport Company Using Enterprise Architecture Framework Valeriy Kurganov and Aleksey Dorofeev	377
Session 8 – Green Supply Chain	
Using the Quantitative and Qualitative Methods for the Modelling of the Green Supply Chain Blanka Tundys Perception and Adaptation of Sugar Industry Toward Green Logistics in Eastern Area, Thailand	392
Oranicha Buthphorm	415
Carbon Pricing System for Vehicles Used in Freight Transport Sattra Vuthy, Ronnachai Tiyarattanachai and Jaruwit Prabnasak	429
Toward Green Library Building Based on Energy Conservation Putu Karningsih, Udisubakti Ciptomulyono, Arrifah Sari and Bima Sofhananda	441
Session 9 – Simulation Modelling	
A Simulation Model for Facility Allocation of New Built Outpatient Department Soriya Hoeur and Duangpun Kritchanchai	452
Duration of Collaboration from A Market Perspective: An Agent-Based Modeling Approach Niniet I. Arvitrida, Antuela A. Tako, Duncan Robertson and Stewart Robinson	468
Research on Selecting Logistics Network Considered with Omni-Channel AvaKomure, Kazuho Yoshimoto and Shunichi Ohmori	481

Drug Inventory Modelling for Internal Supply Chain in the Hospital Prita Meilanitasari, IwanVanany and Erwin Widodo	490
A Literature Review on Different Models and Solution Approaches on Order Picking Problem Shirsendu Nandi and Patanjal Kumar	502
Session 10 – Sustainability Logistics & Supply Chain	
Sustainability Indicators for Third Party Logistics Providers Yurawan Nitisaroj and Jirapan Liangrokapart	515
Pursuing Sustainability Via Reverse Logistics: The Symbiosis Effect Between the Local Authorities and Householders Emy Ezura A Jalil	525
Integrating Life Cycle and Value Stream Mapping to Enhance Total Sustainability Sri Hartini, Udisubakti Ciptomulyono and Maria Anityasari	539
Cost of Quality, ISO 9001 and its Impact on Corporate Performance: A Literature Review Muhammad Rosiawan, Moses L. Singgih and Erwin Widodo	554
The Role of Stakeholder Engagement in External Assurance of Sustainability Reporting Yahaya Yusuf, Emmanuel Olasanmoye, Louise Mc Ardle, Wendy Auchterlounie and Masha Menhat	565
Designing a Sustainable and Resilient Supply Chain: An Empirical Case Study Behnam Fahimnia and Armin Jabbarzadeh	566
Session 11 – Healthcare Supply Chain	
An Exploratory Study of Healthcare Supply Chain Duangpun Kritchanchai and Sineenart Krichanchai	567
Identification of Key Factors for Healthcare Group Purchasing Development: A Literature Review	
Bundid Kungwannarongkun and Jirapan Liangrokapart	582
Factors Affecting IT Projects Success: Case of Healthcare Flows Smaïl Benzidia, Omar Bentahar, Meriam Karaa and Blandine Ageron	596
Towards A Process Reference Model for Healthcare Supply Chain Wirachchaya Chanpuypetch and Duangpun Kritchanchai	608
A Conceptual Framework of Internal Flexibility in Healthcare Service Operations: Role of Advanced Medical Technologies and Operations Improvement Practices Pradeep Kumar, Shibashish Chakraborty and SasadharBera	621

Process Analysis for Blood Supply Chain Using Event Log Iwan Vanany, Anny Maryani, Prita Meilanitasari, Erma Suryani and Bilqis Amaliah	628
Block Appointment Scheduling at a Specialty Clinic: A Case Study Rajesh Piplani	636
Building sustainable service supply in primary care unit Phallapa Petison	637
Session 12 – Apparel Supply Chains and Corporate Social Responsibility	
Supply Chains and Products: A Marketing Production-Perspective George Hadjinicola	638
Value Co-Creation in Services Flow for the Competitiveness of Supply Chain: Conceptual Framework Umer Mukhtar, Sarwar M. Azhar and Tashfeen M. Azhar	645
The Future of Customer Value-Multi-Industry Insights of Value Determinants in Service Networks JyriVilko, Nina Helander and Marko Seppänen	646
Implementation of Social Compliance of the Apparel Industry: A Challenging Road Ahead Suraiyah Akbar and Kamrul Ahsan	657
Imbalancing Between Demand and Supply of Manpower for Textile Industry in Thailand Walailak Atthirawong, Ronnachai Sirovetnukul, Kanogkan Leerojanaprapa, Wariya Panprung and Tanawat Ruangteprat	680
Creating Market Responsiveness through Cross-Functional Integration Ana Beatriz Murillo Oviedo, MarcioLopes Pimenta and Per Hilletofth	691
Session 13 – Food Supply and Distribution	
Network Constraints of Reallocating Seafood Freight from Road to Sea Transport Per Engelseth, Irina V. Karlsen, Shulin Huang and Arild Hoff	703
Food Security is None of Your Business? Food Supply Chain Management in Support of Sustainable Food System Ari Paloviita	715
Design for Mass Customization in Food Industry: Literature Review and Research Agenda Endang RetnoWedowati, Moses LaksonoSinggih and I Ketut Gunarta	726

Contracts in Supply Chain of Fishery Product Considering Traceability and Regulatory Compliance Winda Narulidea, Oki Anita Candra Dewi and Luki Trihardani	720
Model Development of Supply Chain Network for Fresh Agricultural Products in East Java by Considering the Levels of Product Quality Joniarto Parung, Amelia Santoso and Dina N. Prayogo	738 752
Integrated Analysis of Short Food Supply Chain Solution In Order To Design a Suitable Logistics Solution Alexis Nsamzinshuti and Alassane BalléNdiaye	764
Session 14 – Logistics Management	
Supplier Selection Model Considering Truckload Shipping Purnawan Adi Wicaksono, Bambang Purwanggono, I Nyoman Pujawan, and Erwin Widodo	781
The Impact of Customer Orientation of Service Employees on Customer Satisfaction, Commitment and Retention in Logistics Service Providers Imam Baihaqi and Berto Mulia Wibawa	792
Delivery Planning of Last Mile Logistics Considering Absence Probability on Each Term Yuki Shigeta, Kazuho Yoshimoto and Shunichi Ohmori	799
The Estimating Transportation Time for Item Picking in Warehouse Considered with Item Characteristics and External Factors Taisuke Kasuga, Kazuho Yoshimoto and Shunichi Ohmori	811
The Mix-Method Pallet Loading Problem With a Variety of Box Sizes Under Weight and Height Limitation: A Case Study of Indoor and Outdoor Lighting Products Phatcharee Toghaw Thongrattana and Kajornnat Deonphen	822
Vehicle Routing Problem with Pickup and Delivery by Considering Time Window, Last-In First-Out, Loading, and Maximum Route Duration Constraints Suprayogi and Andriansyah Andriansyah	830
A Time-Dependent Vehicle Routing Algorithms for Medical Supplies Distribution Under Emergency Tsai-Yun Liao, Ta-Yin Hu and Yu-Wen Wu	840
Session 15 – Information Technology and Supply Chain Management	
Industry 4.0: What Does It Mean to Supply Chain Management? Renny Tighiono and Carmen Esplusies	852

Enterprise Resource Planning System Implementation: An End-User Perspective Ewout Reitsma, David Wewering and Per Hilletofth	865
Can Improved Transparency Reduce Supply Chain Risks in Cloud Computing? Olusola Akinrolabu and Steve New	877
A review of the Efficiencies of Big Data Analytics in Supply Chain Janya Chanchaichujit, Albert Tan, Wuigee Tan and Sandhya Cheramparampil Surendran	893
ICT Use in Higher Education: Satisfaction with MOODLE as A Learning Management System Aleksander Aristovnik, Nina Tomazevic, Lan Umek and Damjana Kerzic	902
Computerized Maintenance Management System: Literature Review Donladit Mueangman	913
Influence of Cognitive Aspect and Affective Aspects on The Usability Performance of E-Commerce Heru Prastawa, Udisubakti Ciptomulyono, Moses Laksono Singgih and Markus Hartono	923
Session16 - Optimization and Operation Research	
Optimization of Cambering Process by Determination of Process Parameter to Improve of Parabolic Leaf Spring Evelyn DwiLavinia, Ig. Jaka Mulyana, and Ivan Gunawan	935
Optimizing Mean and Variance Simultaneously in Multiple Response Optimization Problems Sasadhar Bera and Indrajit Mukherjee	946
Application of Optimization Modeling to Derive an Engineering Characteristic in QFD Dian Retno Sari Dewi and Elisa Yuanita	955
Decision on Optimal Display Space Following Demand Fluctuation Kazuki Ishichi, Kazuho Yoshimoto and Shunichi Ohmori	962
The Adopting of Markov Analysis to Forecast the Operations Competitive Advantages of Mobile Phone Service Providers: The Case of Jordan <i>Yazan Khalid Abed-Allah Migdadi</i>	973
Capacity Reservation and Utilization for A Manufacturer with Uncertain Capacity and Demand Youssef Boulaksil	988

Critical Operations Capabilities in A High Cost Environment: A Focus Group Study CinziaSansone, Per Hilletofth and David Eriksson

989

APPLICATION OF OPTIMIZATION MODELING TO DERIVE AN ENGINEERING CHARACTERISTICS IN QFD

Dian Retno Sari Dewi

Department of Industrial Engineering, Widya Mandala Catholic University, Surabaya 60116 Indonesia, E-mail: dianretnosd@yahoo.com

Elisa Yuanita

Department of Industrial Engineering, Widya Mandala Catholic University, Surabaya 60116 Indonesia, E-mail: elisa.overcast@gmail.com

ABSTRACT

Quality Function Deployment (QFD) is an important tool to translate the customer requirement needs into technical specifications or engineering characteristics. Conversely, there were many difficulty of using QFD such as defining the correlations between customer needs and engineering characteristics that was very subjective. In order to overcome difficulties, we develop the mathematical model based on Askin and Dawson model to capture the customer needs and translate them into engineering characteristics. We provided a numerical example by using table as object to demonstrate the developed model. Collection of the data were using questionnaire that asking about customer needs and product competitors. Based on the data, we had a set of independent and dependent variables to make linier regression that portray the relation between customer needs and engineering characteristics. The constrained in this mathematical modeling would be the range of engineering specification, budget constraint to develop the engineering characteristic and normalization value of engineering characteristics. The weight for each customer needs were obtained from questionnaire. Result showed that the model could work well under the constrained to gain the customer satisfaction. Value of customer satisfaction is high because the model could distribute optimally for each constraint.

Keywords: mathematical modeling, QFD, customer satisfaction.

1. INTRODUCTION

The development of product design needed many parties that involved as a team. To develop a new product needed an solid team to capture all needed concurrently. One of well known tool is Quality Function Deployment (QFD). QFD is a powerfull development product design to translate the voice of customers into related technical requirements, Akao (1990), Cohen (1995). Conventional QFD considered how to maximize the customer satisfaction without seeing the budget to fulfill that need. The output of solution will not sufficient since its ignore the limitation of budget constraint.

To overcome the lackness of conventional QFD, we proposed the integration QFD and mathematical model. This implementation of the integration can be seen also in Bode (1998), Rahaju (2014) and Dewi (2016). This model has already considered all the constrained to fulfill the objective function. The objective function is to maximize the overall customer satisfaction.

Also QFD have several limitations, how to translate the customer voice, lack of knowledge of using QFD, barrier in working with large teams, and subjectifity of defining the correlation between customer needs and technical requirement. Though the difficulties related to subjective perspectives in relation between the customer needs and technical requirements still open for

discussion. To overcome the lackness in this area, we proposed the linier regression model to portray the relation between customer needs and technical requirement or engineering characteristics. We assumed that the relation between customer need and engineering characteristic was linier. Model of Askin and Dawson (2000) was adopted for this model.

Numerical example will be provided to gain the better understanding to this model. Table for study was used as object, we surveyed several lead customers to identify the requirement for the table and then we selected several requirements as an input to model. We ignored some requirement such as the design and the materials. The subjective function of this model is to maximize the overall customer satisfaction under several constraints that will explain further. Result of this model gives the optimum allocation for constraint in order to fulfill the objective function.

2. THE PROPOSED OPTIMIZATION MODEL

The proposed mathematical model is presented below:

```
Max (2)
安徽正安 种种水平 行物和
in the state of th
(if the improvement activity was conducted in series)
 mmcjtzc-2II
 (if the improvement activity was conducted in pararel)
 \Rightarrow = relative weight of customer need j
 = performance to fulfill need j
 g_j = minimum value of performance to fulfill need j
 =lower bound for engineering characterisic i
 aU =upper bound for engineering characteristic i
```

5-4 represent technically achieveable range

** = normalized engineering characteristic value, value between -1 to 1

ff = initial value of engineering characteristic

= improvement value on engineering characteristics

= production cost per one unit of engineering characteristics improvement

€ = production limitation budget

= R&D cost for improve per unit engineering characteristic

15 = R&Dlimitation budget

= time needed for one unit improvement

= allocation time available

The objective function is to maximize the customer satisfaction. The score was in the range between lower bound and upper bound. The lower bound and upper bound were set by the expert judgment. Normalization value of the climinate bias. The value of the was set in the interval of the lower bound are set by the expert judgment. Normalization value of the climinate bias. The value of the was set in the interval of the lower bound and upper bound were set by the expert judgment. Normalization value of the climinate bias. The value of the lower bound are set by the expert judgment. This constraint enlighten of sources constraint. In this case was the source to improve the engineering characteristics.

3. NUMERICAL EXAMPLE

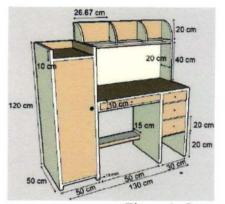

Before conducting market survey, we were survey several lead customers who uses table for study and work everday. Using interview methods we discovered several customer needs. We designed a questionnaire based on interview result and conducted survey for 300 respondents. We asked for how they felt about the need and also gave opinion for competitor products. The customer need were: sturdy table (CN_1) , there was enough space for printer (CN_2) , there was enough space for work (CN_3) , comfortable table (CN_4) , there was enough space to keep things (CN_5) . Related engineering characteristics is leg cross section wide (EC_1) , printer area (EC_2) , table area (EC_3) , leg wide (EC_4) , and spacious volume (EC_5) .

Table 1. House Of Quality

	Relative	Engineering Characteristics					Benchmark	
Customer Needs	Importance Weight	EC ₁	EC ₂	EC₃	EC ₄	EC₅	Α	В
CN ₁	4.33	9					4.47	3.25
CN ₂	3.17		9				4.4	3.2
CN ₃	4.5			9			2.85	4.58
CN ₄	4.8				9		2.76	4.38
CN ₅	4.17					9	4.47	2.91

Table 2. Product specifications

Engineering Characteristics	Product A	Product B
EC ₁ (cm)	15	18
EC_2 (cm ²)	200	250
EC_3 (cm ²)	4000	7000
EC ₄ (cm)	50	60
EC_5 (cm ³)	408.500	422.000

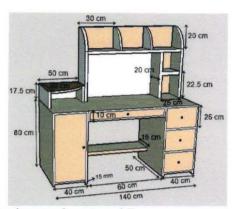


Figure 1. Concept Design product A and B

Figure 1 showed the 3D of the concept designs of product A, and B, while Table 1 contained the specifications details. The feasible range of engineering characteristics were defined as follows: 15 to 18 cm for EC_1 , 200 to 250 cm² for EC_2 , 4000 to 7000 cm² for EC_3 , 50 to 60 cm for EC_4 , 408.500 to 422.000 cm³ for EC_5 . Those range showed the technically acceptable for manufacturing process. The relationship between product performances and engineering characteristics were represented by linier function. The product performances were the dependent ones and the engineering characteristics were the independent variables. The linier regression results are presented below.

```
The regression equation is
CN_1 = 3.86 + 0.610 EC_1
Predictor
               Coef SE Coef T
Constant
              3.86126 0.02893133.45 0.000
Leg cross sec 0.60995 0.0289321.08 0.000
S = 0.565520 R-Sq = 53.9%
                           R-Sq(adj) = 53.8%
The regression equation is
CN_2 = 3.80 + 0.599 EC_2
                      Coef SE Coef
Predictor
                   3.80366 0.03289 115.660.000
Constant
Printer area
                  0.59948 0.03289 18.23 0.000
S = 0.642763 R-Sq = 46.7% R-Sq(adj) = 46.5%
```

```
The regression equation is
CN_3 = 3.72 + 0.866 EC_3
                                   T
Predictor
                      Coef SE Coef
Constant
                   3.71990 0.03444 108.00 0.000
                   0.86649 0.03444 25.16 0.000
Table area
S = 0.673209 R-Sq = 62.5%
                           R-Sq(adj) = 62.4%
The regression equation is
CN_4 = 3.55 + 0.785 EC_4
                           SE Coef
Predictor
                     Coef
                                        T
                  3.54974 0.03182 111.57 0.000
Constant
Leg wide
                  0.78534 0.03182 24.68 0.000
S = 0.621867 R-Sq = 61.6% R-Sq(adj) = 61.5%
The regression equation is
CN_5 = 3.69 + 0.785 EC_5
Predictor
                    Coef
                          SE Coef
                 3.69110 0.03278
                                   112.61 0.000
Constant
Spacious vol
                 0.78534 0.03278
                                  23.96 0.000
              R-Sq = 60.2%
S = 0.640616
                            R-Sq(adj) = 60.1%
```

Using $\alpha = 5\%$, the significant predictors were those that P value < 0.05, all parameters are below 0.05 which are significant. In this example, the source constraint was the reachable budget for product improvement, i.e. IDR 325,000. The incremental improvement costs for engineering characteristics were IDR 0.23 per cm for EC_1 , IDR 7.9 per cm for EC_2 , IDR 7.9 per cm for EC_3 , IDR 1066.5 per cm² for EC_4 , and IDR 39.5 per cm for EC_5 . The other resources, such as development time, were deliberated unbounded. The complete mathematical modeling was as follows.

K_= (23)
27 J.F. (2007)
$y_3 = \frac{5.15 \text{ for Design Per Les}}{4.00 \text{ mode}}$ (24)
<u>12-25-25</u> (25)
$V_{\xi}^{-} = \frac{\left[\frac{1}{2} \cos \theta \cos \theta \cos \theta \right] \left[\frac{1}{2} \cos \theta \cos \theta}{4 \cos \theta \cos \theta} \dots $
(27)
(28)
(全部)11(29)
(多型) 起(30)
(<u>*</u> * * <u>*</u> *(31)
4. — ніте
C_1 , $\rightarrow \mathbb{N}_2 \otimes \mathbb{Z}_2$ (33)
∡ = y- ≤150(34)
C₁ ₹₺Æ₂(35)
4 = 4 3 10(36)
(-2
$Z_{\underline{\underline{}}}^{\underline{\underline{}}} = \overline{\underline{}}_{\underline{\underline{}}}^{\underline{\underline{}}} = \overline{\underline{}}_{\underline{\underline{}}}^{\underline{\underline{}}}$
(39)
4.5- 宗 宋子郭珂(40)
C/=0-7u/2(41)
(元)(42)(5-43) + (42) + (42)

Using LINGO software, the result of the model as follow, EC_1 is 18 cm, EC_2 is 250 cm², EC_3 is 6.972,286 cm², EC_4 is 60 cm, and EC_5 is 415.863,4 cm³ and it gives customer satisfaction value at 90,26%. We also conducted sensitivity analysis for the model. All engineering characteristics had the characteristics of the larger the better, that's why increasing of the parameters of engineering characteristics will increase the customer satisfactions. Since the criteria of the selection is the larger the better, meanwhile all of the resource should follow constraints, that's why the output of this model will attain product B. EC_3 and EC_5 didn't meet the maximal value since the constraint of the budget limit the movement.

4. CONCLUSION

Overcoming the weakness of QFD in general, we propose a model that has already applied in this paper. Objective function of this model is to maximize customers satisfaction and the result of this model is fulfill that criteria. We have done the validation and the result is that all constraints are not infringed and that the model can work properly.