# Production Assembly Line Balancing by considering the Performance Rating of the Operator

by Dewi Dian Retno Sari

**Submission date:** 20-Apr-2023 10:56AM (UTC+0700)

**Submission ID:** 2069998256

**File name:** 23pi-Production\_assembly\_line\_balancing.pdf (7.93M)

Word count: 2357

Character count: 11225



# Production Assembly Line Balancing by considering the Performance Rating of the Operator

Dian Retno S. Dewi<sup>1,a</sup>, and Martinus Edy Sianto<sup>1,b</sup>

<sup>1</sup>Kalijudan 37, Surabaya, Indonesia

adianretnosd@yahoo.com, bmartinus.sianto@gmail.com

Keywords: Assembly line balancing; Total cost; Optimization

Abstract. Line and work cell balancing is an effectual instrument to develop the throughput of assembly lines and work cells while reducing manpower requirements and costs. Assembly Line Balancing is the problem of conveying operations to workstations along an assembline, in such a way that the assignment be optimal in some sense. Our system was designed to minimize the number of workstations, operators and cycle time as well as considering operator performance rating. The models will be developed from the Elsayed and Lesmana model to minimize the cost of work stations, cycle cost, labor cost and the cost of idle labor.

### Introduction

The manufacturing assembly line balancing was introduced in the early 1900. It says designed to be an efficient, highly productive way of manufacturing a particular product [1]. An assembly line is a flow oriented production system where the productive performing the operations, referred to as stations, are associated in a serial manner. The workpiece visit stations successively as they are moved along the line usually by some kind of transportation system. Perfect balance of the line means to unite the element of work to be done in such a manner that at each station the sum of the element that a times just equals the cycle time [2].

An assembly line consists of (work) stations k = 1,...,m usually arranged along a conveyor belt or a similar mechanical material handling equipment. The workpieces (jobs) are consecutively launched down the line and are moved from station to station. At each station, certain operations are repeatedly performed regarding the cycle time (maximum or average time) vailable for each work cycle).

The cycle time of an assembly line is predetermined by a desired production rate. Such the production rate is set so that the desired amount of end product within a certain time period. In order for an assembly line to maintain a certain production rate, sum of processing time at each workstation must not exceed the workstation cycle time. If the sum of the processing time within a workstation is less than the cycle time, the idle time is said to be present at that workstation [3].

Many methods have been already examined by researchers, both optimization and heuristics. Branch and bound algorithm for simple assembly line balancing problems has been applied [4], applications of simulated annealing has been implemented in mixed model assembly line balancing [5]. None of them applied trade off between cost of worstation and cost of cycle time considering operator performance.

Optimization assembly line balancing model developed by Elsayed and Boucher aims to minimize the cost of procurement of work stations and the costs associated with the cycle time but does not consider the performance of the operator on each element of work, though the performance the operator is crucial. Optimization model developed by Lesmana and Hartono [6] consider the performance of the operator on each element of work but does not consider the cost of workstation cycle time and cost. This presearch will accommodate the lackness of each model, we will develop a model for line balancing to minimize the cost of work stations, cycle time cost, operator cost and the cost of idle operators.

(1)



### **Model Development**

Developing an optimization model to pinimize the amount of work stations and the number of operators so that all costs associated with the number of work stations and the number of operators to a minimum. Previous research (Elsayed and Boucher 1994) have developed a model of assembly line balancing by minimizing the number of stations taking into account the cost of workstation cycle time and cost. Lesmana and Hartono (2003) also developed a model of assembly line balancing by considering the performance of the operator on each element of work. Our model will minimize the number of workstations, cycle time cost as well as operator cost and cost of idle operators.

Minimized 
$$Z = \sum_{s=1}^{S} f_s X_s + c$$
. (max  $T_s$ ) +  $F_r$ .  $\sum_{s=1}^{S} X_s$  .max  $T_s$  +  $F_r$ . (( $\sum_{s=1}^{S} X_s$  max  $T_s$  -  $\sum_{s=1}^{S} T_s$ )/max  $T_s$ )

to constrains .

Subject to constrains:

$$\sum_{s=1}^{S} X_{is} = 1 \qquad \forall i = 1...N$$
 (2)

$$T_s = \sum_{i=1}^{N} \sum_{k=1}^{K} X_{is} Y_{ks} \left( \frac{W_i}{C_{ki}} \right) \qquad \forall s = 1...S$$

$$(3)$$

$$T_s \le C$$
  $\forall s = 1...S$  (4)

$$X_{is} \le \sum_{r=1}^{s} X_{jr}$$
  $\forall i = S_i, \ \forall j = P_i, \ \forall s = 1...S$  (5)

$$\sum_{i=1}^{N} X_{is} - \|W_s\| X_s \le 0, \qquad \forall s = 1, 2, \dots S$$

(6)

$$\sum_{k=1}^{K} Y_{ks} = 1 \qquad \forall s = 1 \dots S$$

(7)

$$\sum_{s=1}^{S} Y_{ks} \le 1 \qquad \forall k = 1...K \tag{8}$$

$$X_{is}, Y_{ks}, X_{s} \in \{0,1\}$$
 (9)

Objective function (1): minimize total cost of work stations, the total cost of the cycle time, the total cost of the operator including of idle operators. Workstations costs are the costs associated with necessary resources in addition to the work station operator, for example, costs associated with maintenance, depreciation of machinery. Cycle Cost is costs associated with production speed. The total cost of operator associated with the allocation of operators at the work station. This cost is calculated by multiplying the salary of a regular operator with a number of operators at the work



station and the actual cycle time. The total cost of idle operators are treated as a lost opportunity. This cost is calculated by multiplying the salary of a regular operator with a total time of idle operators all work stations divided by the actual cycle time. Constrain (2) forces each task to be assigned to workstation (3) calculate the total operating time of each work station based on elements of work and operators who are allocated. Constrain (4) ensure that the total time spent on each work element in the work stations do not exceed the 10 cle time. Constrain (5) ensure precedence constrain are satisfied. Constrain (6) provides for the minimization of the number of workstation Constrain (7) ensure that each work station operated by one operator only. Constrain (8) ensure that an operator can only handle a maximum of one work station. Constrain (9) zero — one variable that equals 1 if task i is assigned to station s and equals zero otherwise, zero — one variable that equals 1 if station j is assigned and equals zero otherwise.

### **Numerical Example**

There are 9 task. The maximum number of workstation is set to 5 due to layout constrain. The cost of workstation  $(f_s) \Rightarrow f_1 = f_2 = f_3 = 15$ ,  $f_4 = f_5 = 20$ , The cost of cycle time (c) = 3

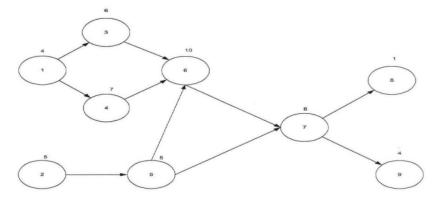



Fig. 1. Precedence diagram for numerical example

Table 1. Task time and presedence requirement

| Task | Task<br>time<br>(menit) | Direct Predecessor | Ei | Li | Assigment of Zero-One<br>Variables |
|------|-------------------------|--------------------|----|----|------------------------------------|
| 1    | 4                       | -                  | 1  | 4  | X11, X12, X13, X14                 |
| 2    | 5                       |                    | 1  | 4  | X21, X22, X23, X24                 |
| 3    | 6                       | 1                  | 1  | 4  | X31, X32, X33, X34                 |
| 4    | 7                       | 1                  | 1  | 4  | X41, X42, X43, X44                 |
| 5    | 5                       | 2                  | 1  | 4  | X51, X52, X53, X54                 |
| 6    | 10                      | 3, 4, 5            | 2  | 4  | X62, X63, X64                      |
| 7    | 6                       | 5, 6               | 2  | 5  | X72, X73, X74, X75                 |
| 8    | 1                       | 7                  | 2  | 5  | X82, X83, X84, X85                 |
| 9    | 4                       | 7                  | 2  | 5  | X92, X93, X94, X95                 |

Production Rate: 80 unit / week (0.033 unit/minutes), cycle time = 0.96 / 0.033 unit / minutes = 29.1 minutes Reguler salary ( $F_r$ ) = Rp 600.000 / month

= Rp 150.000 / week

= Rp 62.5 / minutes

Cost Of the workstation  $(f_s)$  = Rp 125.000 / station

Price of the product = Rp 2.500.000 / unit

Profit =20 % Price of the product = Rp 500.000 / unit

Cycle time cost(c)

= Production rate \* Profit

= 0.033 unit/ minutes \* Rp 500.000 / unit

= Rp 16.500 / minutes

Table 2. Perfomance rating operator for each task

| Operator - |     | Performance rating operator for each task (%) |     |     |     |     |     |     |     |  |
|------------|-----|-----------------------------------------------|-----|-----|-----|-----|-----|-----|-----|--|
|            | 1   | 2                                             | 3   | 4   | 5   | 6   | 7   | 8   | 9   |  |
| 1          | 115 | 113                                           | 117 | 115 | 116 | 118 | 115 | 117 | 112 |  |
| 2          | 117 | 119                                           | 119 | 119 | 112 | 118 | 111 | 120 | 118 |  |
| 3          | 113 | 110                                           | 119 | 120 | 120 | 114 | 113 | 114 | 115 |  |
| 4          | 114 | 116                                           | 120 | 111 | 115 | 120 | 110 | 110 | 111 |  |
| 5          | 111 | 117                                           | 117 | 111 | 111 | 120 | 115 | 113 | 120 |  |

Actual time is obtained by =  $\frac{W_i}{C_{ki}}$ 

where:

 $W_i$  = standart time for task i

 $C_{ki}$  = performance rating operator at each task

Table 3. Result of the Model

| Cost Of the Workstation<br>(Rp/stasiun) | Cycle<br>Cost<br>(Rp /<br>menit) | Reguler<br>Cost<br>(Rp<br>/menit) | Number Of<br>Workstation | Cycle<br>Time<br>(menit) | Operator<br>Idle<br>Time<br>(menit) | Total<br>Cost<br>(Rp) |
|-----------------------------------------|----------------------------------|-----------------------------------|--------------------------|--------------------------|-------------------------------------|-----------------------|
| 125000                                  | 16500                            | 62.5                              | 2                        | 22.26                    | 3.13                                | 620081.3              |

Due to the number of workstation output were two station, work elements assigned to workstation 1 were number 1,2,3 and 4 and work elements assigned to workstation 2 were number 5,6,7,8 and 9.



### Computational Experiment and Analysis

| Cost Of the<br>Workstation<br>(Rp /<br>stasiun) | Cycle<br>Cost (Rp<br>/menit) | Reguler<br>Cost<br>(Rp /<br>menit) | Performance<br>Rating | Number Of<br>Workstation | Cycle<br>Time<br>(menit) | Operator<br>Idle Time<br>(menit) | Total<br>Cost(Rp |
|-------------------------------------------------|------------------------------|------------------------------------|-----------------------|--------------------------|--------------------------|----------------------------------|------------------|
| 10000                                           | 25000                        | 62.5                               | 110-120               | 5                        | 9.43                     | 5.37                             | 288732.:         |
| 60000                                           | 25000                        | 62.5                               | 110-120               | 5                        | 9.43                     | 5.37                             | 538732.:         |
| 80000                                           | 25000                        | 62.5                               | 110-120               | 4                        | 12.08                    | 6.07                             | 625051.4         |
| 100000                                          | 25000                        | 62.5                               | 110-120               | 4                        | 12.08                    | 6.07                             | 705051.4         |
| 125000                                          | 25000                        | 62.5                               | 110-120               | 3                        | 16.99                    | 9.28                             | 802970           |
| 126000                                          | 25000                        | 62.5                               | 110-120               | 3                        | 16.99                    | 9.28                             | 805970           |
| 140000                                          | 25000                        | 62.5                               | 110-120               | 2                        | 22.26                    | 3.13                             | 839291.          |
| 150000                                          | 25000                        | 62.5                               | 110-120               | 2                        | 22.26                    | 3.13                             | 859291.          |
| 125000                                          | 16500                        | 62.5                               | 110-120               | 2                        | 22.26                    | 3.13                             | 620081.          |
| 125000                                          | 22000                        | 62.5                               | 110-120               | 2                        | 22.26                    | 3.13                             | 742511.          |
| 125000                                          | 24000                        | 62.5                               | 110-120               | 3                        | 16.99                    | 9.28                             | 785980           |
| 125000                                          | 25000                        | 62.5                               | 110-120               | 3                        | 16.99                    | 9.28                             | 802970           |
| 125000                                          | 30000                        | 62.5                               | 110-120               | 4                        | 12.08                    | 6.07                             | 865451.          |
| 125000                                          | 35000                        | 62.5                               | 110-120               | 4                        | 12.08                    | 6.07                             | 925851.          |
| 125000                                          | 50000                        | 62.5                               | 110-120               | 5                        | 9.43                     | 5.37                             | 1099482          |
| 125000                                          | 60000                        | 62.5                               | 110-120               | 5                        | 9.43                     | 5.37                             | 1193782          |
| 125000                                          | 25000                        | 62.5                               | 80-90                 | 4                        | 16.57                    | 8.33                             | 918424           |
| 125000                                          | 25000                        | 62.5                               | 90-100                | 4                        | 14.74                    | 7.225                            | 872216           |
| 125000                                          | 25000                        | 62.5                               | 100-110               | 4                        | 13.27                    | 7.22                             | 835102           |
| 125000                                          | 25000                        | 62.5                               | 110-120               | 3                        | 16.99                    | 9.28                             | 802970           |

### **Sensitivity Analysis**

Sensitivity analysis conducted to determine how sensitive a model that has been developed to the total cost. It is concluded that cost of workstation increase linearly with total cost because the cost of a workstation is as a part of the total cost. Cycle cost has the same impact. The increasing of performance rating operators gives significant decreasing of total cost. It is because as the increasing the productivity of the operators gives positive improvement of work processing time. This resulted in a lower total cost. It is also examined that the greater the cost of workstation the less the amount of workstation because the trade off function of cycle time. In contrary, the increasing of cycle cost will reduce the number of workstations. This is demonstrate that the model works well.

### **Summary**

A new development model for line balancing by considering the performance rating of operator as well as to minimize cycle time cost and cost of workstations to minimize the total cost has been proposed in this paper. The result of a new model development had been verified as follows:

- 1. Every work elements will assign at only workstation at time.
- 2. Presedence constrain restriction was filled.
- 3. Cycle time was filled.

The result shown that all constraint had fullfilled to minimize total cost. Therefore, the model could work well.



### References

- S.Suwanarongsri, S Limnararat D, Puangdownreong, A new hybrid intelligent method for assembly line balancing, Proceeding of the IEEE International Conference on Industrial and Engineering Management (2007)
- [2] Elsayed, Elsayed A., Boucher Thomas O., Analysis and Control of Production Systems USA, Prentice-Hall International Inc. (1994)
- [3] Sarin, A survey of the assembly line balancing procedure, Production Planning Control (1998)
- [4] Sprecher, A, A competitive Branch and bound algorithm fot the simple assembly line balancing problem, International Journal Of Production Research (1999)
- [5] Vilarinho, a two stage heuristic method fot balancing mixed model assembly lines with paralel workstation, International Journal Of Production Research (2002)
- [6] Lesmana dan Hartono., Model Optimasi Penyeimbangan Lini Perakitan dengan Mempertimbangkan Performansi Operator, Jurnal Seminar Sistem Produksi (2003)

### Nomenclature

|    |   | -     |       |
|----|---|-------|-------|
| •  | • | Tack  | Index |
| 1. | 1 | 1 ask | HIUCA |

s : Workstation Index k : Operator Index

 $f_s$ : Cost of Workstation (Rp).

 $X_s$ : Workstation (s), s = 1...S.

: Cycle Cost (Rp / minutes ).

C : Cycle Time

F<sub>r</sub>: Regular Operator Salary (Rp / minutes)

N: task

W: : Standard time task i

C<sub>ii</sub>: Performance rating operator k for handling task i

 $X_{is}$ : zero – one variable that equals 1 if task i is assigned to station s and equals zero otherwise.

xj : zero – one variable that equals 1 if station j is assigned and equals zero otherwise.
 w : subset of all tasks that could be assigned to station j by virtue of task precedence

constraints

 $E_i$ : Earliest workstation that task i can be assigned to, given precedence requirement

Li : Latest workstation that task i can be assigned to, given precedence requirement

 $Y_{ks}$ : zero – one variable that equals 1 if operator k is assigned to station s and equals zero

otherwise.

T<sub>s</sub>: task time in workstation s

# Production Assembly Line Balancing by considering the Performance Rating of the Operator

|            | ALITY REPORT                                                 | Raurig of the Op                                                                                                                                        | erator                                                                              |                                             |      |
|------------|--------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|---------------------------------------------|------|
| 1<br>SIMIL | 7%<br>ARITY INDEX                                            | <b>7</b> % INTERNET SOURCES                                                                                                                             | 14% PUBLICATIONS                                                                    | 11%<br>STUDENT PA                           | PERS |
| PRIMAF     | RY SOURCES                                                   |                                                                                                                                                         |                                                                                     |                                             |      |
| 1          | fr.slides                                                    | share.net                                                                                                                                               |                                                                                     |                                             | 3%   |
| 2          | Submitt<br>Birming<br>Student Pape                           | •                                                                                                                                                       | of Central En                                                                       | gland in                                    | 2%   |
| 3          | Laine M<br>"Manua<br>of a No<br>Technic<br>Assemb<br>Micro a | Antani, Bryan Plears, Kilian Funl<br>Il Precedence Ma<br>vel Precedence I<br>Jue to Real-Work<br>oly Line Balancin<br>Ind Nano Techno<br>Icturing, 2013 | k, Maria E. Ma<br>apping and Ap<br>Relationship Lo<br>d Automotive<br>g", Volume 2: | yorga.<br>oplication<br>earning<br>Systems; | 2%   |
| 4          | Submitt<br>Student Pape                                      | ted to Universita                                                                                                                                       | ıs Mataram                                                                          |                                             | 2%   |
| 5          | line bala                                                    | R.F "A goal ap<br>ancing", Comput<br>th, 1990                                                                                                           | •                                                                                   | _                                           | 1 %  |

| 6  | S. G Ponnambalam, P. Aravindan, G. Mogileeswar Naidu. "A comparative evaluation of assembly line balancing Heuristics", The International Journal of Advanced Manufacturing Technology, 2013 Publication | 1 % |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 7  | etj.uotechnology.edu.iq Internet Source                                                                                                                                                                  | 1 % |
| 8  | RICHARD F. DECKRO. "Balancing Cycle Time and Workstations", IIE Transactions, 1989                                                                                                                       | 1 % |
| 9  | Ilham Nur Fadlil, Cucuk Nur Rosyidi. "Improvement of work processes and methods to achieve production targets using VA/NVA analysis, ECRS and line balancing", AIP Publishing, 2020 Publication          | 1 % |
| 10 | A. SPRECHER. "A competitive branch-and-bound algorithm for the simple assembly line balancing problem", International Journal of Production Research, 5/20/1999 Publication                              | 1 % |
| 11 | "Network Models and Optimization", Springer Nature, 2008 Publication                                                                                                                                     | 1 % |
| 12 | Panneerselvam Sivasankaran, Peer Mohamed<br>Shahabudeen. "Design and Comparison of                                                                                                                       | 1 % |

# Genetic Algorithms for Mixed-Model Assembly Line Balancing Problem with Original Task Times of Models", American Journal of Industrial and Business Management, 2016

< 1%

Publication

Exclude quotes On Exclude matches

Exclude bibliography On