

turnitin Originality Report

53 Plasma-implanted Ti-doped hematite photoanodes with enhanced photoelectrochemical water oxidation performance by Shella Santoso

From Similarity check (check paper Jakad SPS)

1% match (publications)

8

Similarity Index

20%

Similarity by Source

Internet Sources: Publications: Student Papers:

N/A 20% N/A

Processed on 01-Mar-2022 10:01 WIB ID: 1773488105 Word Count: 7383	sources:
with plasma-implanted Ni/TiN/CNF hierard Chemistry, 2021	3% match (publications) Rugeng Liu, Xiang Peng, Xu Han, Chun Hong Mak et al. "Cost-effective liquid-junction solar devices chically structured nanofibers", Journal of Electroanalytical
	Cheng Lu, Haitao Li, Jun Zhong, Jiujun Deng. "Water-soluble trategy to prepare Fe2O3/Fe2TiO5 photoanode with bys and Compounds, 2021
Peng, Jianqiang Wang, Chunhai Fa	iang Chang, Xiao Lin, Yuying Zhang, Ali Aldalbahi, Cheng an. "Uniform Doping of Titanium in Hematite Nanorods for tting", ACS Applied Materials & Interfaces, 2015
1% match (publications) K. Lau, C. Heu, M.J. Moore, A. Zhang, B. Akhavan, S.G. Wise, M.M.M. Bilek, M.S. Lord, J. Rnjak-Kovacina. "Effect of plasma ion immersion implantation on physiochemical and biological properties of silk towards creating a versatile biomaterial platform", Materials Today Advances, 2022	
	n of nickel wrinkled nanostructure from choline t (reline) and application for electroanalysis of simvastatin",
	eva, Mehmet Sankir, Nurdan Demirci Sankir. "CsPbBr3 and rovskite sensitization of 3D-ZnO nanostructures for Journal of Luminescence, 2021
Yuan-Ming Zhang, and Wenjie Mai	Ye, Zhisheng Chai, Xiang Yu, Xiaobo Chen, Chuanxi Zhao, . "Combining bulk/surface engineering of hematite to emical water splitting performance", ACS Applied Materials

<u>Naghmehalsadat Mirbagheri, Degao Wang, Cheng Peng, Jianqiang Wang, Qing Huang, Chunhai Fan, Elena E. Ferapontova. "Visible Light Driven Photoelectrochemical Water</u>

Oxidation by Zn- and Ti-Doped Hematite Nanostructures", ACS Catalysis, 2014

1% match (publications) 9 Liyang Wang, Guohui Tian, Yajie Chen, Yuting Xiao, Honggang Fu. "In situ formation of a ZnO/ZnSe nanonail array as a photoelectrode for enhanced photoelectrochemical water oxidation performance", Nanoscale, 2016 1% match (publications) 10 Tae Hwa Jeon, Gun-hee Moon, Hyunwoong Park, Wonyong Choi. "Ultra-efficient and durable photoelectrochemical water oxidation using elaborately designed hematite nanorod arrays". Nano Energy, 2017 1% match (publications) 11 Xin Zhao, Jianyong Feng, Ning Wang, Shi Chen, Zhaohong Huang, Zhong Chen. "The influence of Ti doping on morphology and photoelectrochemical properties of hematite grown from aqueous solution for water splitting", Energy Technology, 2018 1% match (publications) 12 Longzhu Li, Changhai Liu, Yangyang Qiu, Naotoshi Mitsuzak, Zhidong Chen. "The influence of the hydrothermal temperature and time on morphology and photoelectrochemical response of α-Fe 2 O 3 photoanode", Journal of Alloys and Compounds, 2017 < 1% match (publications) 13 Yungi Tang, Chun Hong Mak, Rugeng Liu, Zuankai Wang, Li Ji, Haisheng Song, Chunyan Tan, Frédéric Barrière, Hsien-Yi Hsu. "In Situ Formation of Bismuth-Based Perovskite Heterostructures for High-Performance Cocatalyst-Free Photocatalytic Hydrogen Evolution", Advanced Functional Materials, 2020 < 1% match (publications) 14 Haiguo Hu, Yonghong Zeng, Shan Gao, Rui Wang et al. "Fast solution method to prepare hexagonal tellurium nanosheets for optoelectronic and ultrafast photonic applications". Journal of Materials Chemistry C, 2021 < 1% match (publications) 15 Zhongyuan Zhou, shaolong wu, Chenhong Xiao, Liujing Li, Xiaofeng Li. "Underlayer engineering into the Sn-doped hematite photoanode for facilitating carrier extraction", Physical Chemistry Chemical Physics, 2020 < 1% match (publications) 16 Guang Liu, Yong Zhao, Rui Yao, Na Li, Muheng Wang, Hangjuan Ren, Jinping Li, Chuan

Guang Liu, Yong Zhao, Rui Yao, Na Li, Muheng Wang, Hangjuan Ren, Jinping Li, Chuan Zhao. "Realizing high performance solar water oxidation for Ti-doped hematite nanoarrays by synergistic decoration with ultrathin cobalt-iron phosphate nanolayers", Chemical Engineering Journal, 2019

< 1% match (publications)

17

18

Gul Rahman, Zainab Najaf, Anwar ul Haq Ali Shah, Shabeer Ahmad Mian. "Investigation of the structural, optical, and photoelectrochemical properties of α-Fe2O3 nanorods synthesized via a facile chemical bath deposition", Optik, 2020

< 1% match (publications)</p>

Aadesh P. Singh, Nishant Saini, Bodh R. Mehta, Anders Hellman, Beniamino landolo, Björn Wickman. "Hydrogen treatment and FeOOH overlayer: Effective approaches for enhancing the photoelectrochemical water oxidation performance of bismuth vanadate thin films", Catalysis Today, 2019

19 < 1% match (publications)</pre>

Haiyan Ji, Shan Shao, Guotao Yuan, Cheng Lu, Kun Feng, Yujian Xia, Xiaoxin Lv, Jun Zhong, Hui Xu, Jiujun Deng. "Unraveling the role of Ti3C2 MXene underlayer for enhanced photoelectrochemical water oxidation of hematite photoanodes", Journal of Energy Chemistry, 2021

20 < 1% match (publications)</p>

Ashish Tiwari, Nutan S. Satpute, Chaitali M. Mehare, S.J. Dhoble. "Challenges, recent advances and improvements for enhancing the efficiencies of ABX3-based PeLEDs (perovskites light emitting diodes): A review", Journal of Alloys and Compounds, 2021

< 1% match (publications)</pre>

Cai, Li, Feng Ren, Meng Wang, Guangxu Cai, Yubin Chen, Yichao Liu, Shaohua Shen, and Liejin Guo. "V ions implanted ZnO nanorod arrays for photoelectrochemical water splitting under visible light", International Journal of Hydrogen Energy, 2015.

< 1% match (publications)</pre>

<u>Kai Zhang, Tianjiao Dong, Guancai Xie, Liming Guan et al. "Sacrificial Interlayer for Promoting Charge Transport in Hematite Photoanode", ACS Applied Materials & Interfaces, 2017</u>

< 1% match (publications)</pre>

<u>Lee, Y.C..</u> "Transport of dusts from East Asian and non-East Asian sources to Hong Kong during dust storm related events 1996-2007", Atmospheric Environment, 201009

< 1% match (publications)</pre>

Moir, Jonathon W., Emma V. Sackville, Ulrich Hintermair, and Geoffrey A. Ozin. "Kinetics versus Charge Separation: Improving the Activity of Stoichiometric and Non-Stoichiometric Hematite Photoanodes Using a Molecular Iridium Water Oxidation Catalyst", The Journal of Physical Chemistry C, 2016.

< 1% match (publications)</pre>

Chun Hong Mak, Rugeng Liu, Xu Han, Yunqi Tang, Xingli Zou, Hsin-Hui Shen, Yao Meng, Guizheng Zou, Hsien-Yi Hsu. "Thermally Activated Delayed Phosphorescence and Interchromophore Exciton Coupling in a Platinum-Based Organometallic Emitter", Advanced Optical Materials, 2020

< 1% match (publications)</pre>

Wang, Tuo, and Jinlong Gong. "Single-Crystal Semiconductors with Narrow Band Gaps for Solar Water Splitting", Angewandte Chemie International Edition, 2015.

< 1% match (publications)</pre>

Xingli Zou, Li Ji, Xiao Yang, Taeho Lim, Edward T. Yu, Allen J. Bard. " Electrochemical Formation of a Junction on Thin Film Silicon Deposited in Molten Salt ", Journal of the American Chemical Society, 2017

< 1% match (publications)</pre>

Fan Feng, Can Li, Jie Jian, Xiaokang Qiao, Hongqiang Wang, Lichao Jia. "Boosting hematite photoelectrochemical water splitting by decoration of TiO2 at the grain boundaries", Chemical Engineering Journal, 2019

< 1% match (publications)</pre>

Mahdi Rasouli, Amin Yourdkhani, Reza Poursalehi. "Photoelectrochemical properties of gradient Ti-doped hematite thin films prepared by liquid phase deposition", Materials Science in Semiconductor Processing, 2022

< 1% match (publications)</pre>

Rochan Sinha, İrem Tanyeli, Reinoud Lavrijsen, M.C.M. van de Sanden, Anja Bieberle-Hütter.

"The electrochemistry of iron oxide thin films nanostructured by high ion flux plasma
exposure", Electrochimica Acta, 2017

31 < 1% match (publications)</pre>

"Author Index", Journal of Alloys and Compounds, 2010

< 1% match (publications)</pre>

Yandong Duan, Nianqing Fu, Qiuping Liu, Yanyan Fang, Xiaowen Zhou, Jingbo Zhang, Yuan Lin. "Sn-Doped TiO Photoanode for Dye-Sensitized Solar Cells ", The Journal of Physical Chemistry C, 2012

< 1% match (publications)</pre>

Fan Feng, Can Li, Jie Jian, Fan Li, Youxun Xu, Hongqiang Wang, Lichao Jia. "Gradient Tidoping in hematite photoanodes for enhanced photoelectrochemical performance", Journal of Power Sources, 2020

< 1% match (publications)

Jin Zhang, Gangqiang Zhu, Weiguo Liu, Yingxue Xi, D.A. Golosov, S.M. Zavadski, S.N. Melnikov. "3D core-shell WO3@α-Fe2O3 photoanode modified by ultrathin FeOOH layer for enhanced photoelectrochemical performances", Journal of Alloys and Compounds, 2020

< 1% match (publications)</pre>

Shima Farhoosh, Behrooz Eftekharinia, Meysam Tayebi, Byeong-Kyu Lee, Naimeh Naseri.

"Newly designed ternary hematite-based heterojunction for PEC water splitting", Applied

Surface Science, 2021

< 1% match (publications)</pre>

Tushar Kanta Sahu, Manoj Kumar Mohanta, Mohammad Qureshi. "Modulating water oxidation kinetics utilizing h-BN quantum dots as an efficient hole extractor on fluorine doped hematite photoanode", Journal of Power Sources, 2020

paper text:

34

Journal of Alloys and Compounds 870 (2021) 159376

31Contents lists available at ScienceDirect Journal of Alloys and Compounds journal homepage: www.elsevier.com/locate

/jalcom

3Plasma-implanted Ti-doped hematite photoanodes with enhanced photoelectrochemical water oxidation performance

[]]]]]]]] Yong Peng a,c,d, Qingdong Ruan b,c, Chun Ho Lam a, Fanxu Meng e, Chung-Yu Guan f, Shella Permatasari Santoso g,h, Xingli Zou i, Edward T. Yu j, Paul K. Chu b,c, Hsien-Yi Hsu a,c,d,* a School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong, China b Department of Physics, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong,

China c Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China d Shenzhen Research Institute of City University of Hong Kong, Shenzhen 518057, China e

14Institute of Microscale Optoelectronics, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China

f Department of Environmental Engineering, National Ilan University, Yilan 260, Taiwan, ROC g

1Chemical Engineering Department, Widya Mandala Surabaya Catholic University, East Java, Indonesia h Chemical Engineering Department, National Taiwan University of Science and Technology, Taipei, Taiwan, ROC

25State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China

j

27Microelectronics Research Center, Department of Electrical and Computer Engineering, the University of Texas at Austin, Austin 78758, Texas

article info Article history: Received 4 December 2020 Received in revised form 6 February 2021 Accepted 1 March 2021 Available online 6 March 2021 Keywords: Hematite Photoelectrochemistry Surface engineering Plasma ion implantation abstract Hematite (α-Fe2O3) is recognized as a promising photoelectrode material for photoelectrochemical (PEC) water splitting, as a result of its abundance, non-toxicity, suitable bandgap, and photochemical stability. Nevertheless, the undesirable physical and photophysical behaviors, such as poor conductivity, short dif- fusion length, and rapid charge-carrier recombination, seriously restrict PEC water splitting efficiency of hematite semiconductors. Herein, we fabricate nanoporous titanium (Ti)-doped α-Fe2O3 thin films by a facile hydrothermal reaction, subsequently utilizing energetic plasma ion implantation with a post-an- nealing process to significantly enhance the photoelectrochemical water oxidation performance of hema- tite. On the basis of materials characterization and electrochemical analysis, the optimized Ti-doped Fe2O3, i.e., Ti-4-Fe2O3, exhibits improved photocurrents of 0.55 and 1.07 mA cm-2 at 1.23 and 1.5 V versus RHE respectively under illumination of 100 mW/cm2 with AM 1.5 G spectrum, showing approximately 1.6-fold increases compared to pristine Fe2O3. We attribute this increase to improved charge carrier transport in- duced by Ti doping that reduces the recombination of light-driven charge carriers. The work utilizing plasma-assisted doping technique provides new insights into the surface engineering of photo-responsive semiconductors for the development of emerging hydrogen technologies. © 2021 Elsevier B.V. All rights reserved. 1. Introduction Solar energy has been recognized as one of the most promising and cost-competitive renewable energy alternatives for the re- placement of conventional fossil fuels. Photoelectrochemical (PEC) water splitting is an attractive approach to convert renewable light energy

into chemical energy for practical applications, owing to the facile storage and transportation of hydrogen. In the field of solar water splitting, we still face the challenge related to the cost- *

23Corresponding author at: School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong, China

.

13E-mail address: sam.hyhsu@cityu.edu.hk (H.-Y

. Hsu). https://doi.org/10.1016/j.jallcom.2021.159376 0925-8388/© 2021

1Elsevier B.V. All rights reserved

. effective fabrication of robust photo-responsive materials with high performance in an economic way. Among the most favorable semi- conductors, e.g. BiVO4, WO3 and Fe2O3 for PEC water oxidation, there is no doubt that

22hematite (α-Fe2O3) is a promising photoanode candidate as a result of its

chemical stability, environmental friendliness, earth abundance as well as a suitable bandgap (~

112.1 eV) that achieves a theoretical solar-to-hydrogen efficiency of ~16% [1

].

10Despite these advantages, hematite suffers from

ultrafast

35electron- hole recombination (~10 ps), short hole diffusion length (2–4 nm) and slow oxygen evolution reaction (OER

) activity [2]. Various strategies have been developed to overcome these obstacles. Elemental doping is a highly practical approach

15to improve the PEC performance. Among various elements, e.g. Ti [3], Sn

[4], and P [5], titanium doping of hematite photoanodes is a potential strategy. For instance, Franking et al. demonstrated that the addition of Ti precursor solutions on hematite films followed by annealing in atmosphere could promote Ti diffusion into hematite, resulting in the enhancement of its PEC response [6]. Ion

implantation is an efficient technique for surface modification of conventional materials, such as alloys and polymers, to improve their mechanical properties (e.g. anti-corrosion, anti-wear and strength) and chemical properties (e.g. destruction and formation of chemical bonds) [7]. In recent years, the ion implantation technique has been introduced to modify and develop photoelectrodes. For example, Shen's group has reported that V [8], Cu [9] and W [10] ions could be implanted into ZnO lat- tices. The

9enhanced PEC performance of the ion implanted ZnO

could

21be attributed to both improved visible light absorption and increased charge carrier density

. Controllable amounts of elemental doping and modification of surface morphology can both be realized by ion implantation. Herein, we fabricate efficient photoresponsive materials by utilizing this technique

15for improving the performance of PEC water splitting

for hematite. After different doses of titanium implantation and subsequent post-annealing treatments, pristine and titanium plasma implantation treated hematite, i.e., Fe2O3, Ti-1-Fe2O3, Ti-2-Fe2O3, Ti-4-Fe2O3 and Ti-8-Fe2O3, were synthesized. The surface morphology of titanium plasma implantation treated hematite is moderately changed to the nanoporous structure. We observe well-distributed Ti doping on the surface, resulting in lower photoluminescence (PL) intensity as a result of reduced charge carrier recombination. The optimized Ti-implanted hematite, Ti-4-Fe2O3, exhibits the lowest charge transfer resistance and highest charge carrier density, re- sulting in a highest photocurrent density with a better stability compared to pristine hematite. To the best of our knowledge, this is the first report of hematite treated by using Ti plasma implantation for the enhancement of PEC water oxidation. 2. Experimental 2.1. Reagents and materials Anhydrous FeCl3 (99%, Alfa Aesar) and NaNO3 (99.9%, DUKSAN) were used as received without further purification. Fluorine-doped tin oxide (FTO) coated glass (6–9 Ω /sq) was sliced to 1.5 × 3.0 cm pieces which were subsequently sonicated in

12deionized water, acetone and ethanol each for 20 min and then dried with

com- pressed air before use. Ti rods (99.9999%, Shenzhen Morgan Sputtering Targets & Technology Co., China) were used as an ion beam source for implantation. All solutions were prepared using ultrapure water generated by Milli-Q water purification system. 2.2. Preparation of pristine α -Fe2O3 and titanium ion implanted α -Fe2O3 Hematite

11films were fabricated on fluorine-doped tin oxide (FTO) coated glass according to previous

studies [11]. Typically, 2.433 g of FeCl3 (0.15 M) and 8.50 g of NaNO3 (1 M) were dissolved in ultrapure water and the volume was adjusted to 100 mL using a 100-mL vo- lumetric flask. The pH of the solution was about 1.5 without the adjustment. After that, 20 mL of the precursor solution was added into each 30 mL Teflon liner containing a piece of FTO glass with FTO side facing down. The hydrothermal reactors were

19heated at 95 °C for 4 h in an oven. Consequently, akaganeite (β -FeOOH) coated on FTO

glass could be obtained and was rinsed with ultrapure water several times. Next, the

12β-FeOOH was calcined at 550 °C for 2 h

(ramp rate 2.5 °C min-1) and then at 800 °

30C for 10 min (ramp rate 5 $^{\circ}$ C min-1) under air atmosphere to

obtain α -Fe2O3 in a tube furnace. For titanium ion implantation treatment, the obtained β -FeOOH films were firstly treated with titanium ion beam generated from a metal vapor vacuum arc source by a broad-beam

1high energy ion implanter (Model HEMII-80, Plasma Technology Ltd

.). Titanium ions were implanted with doses of 0 (a control sample), 1 × 1016, 2 × 1016, 4 × 1016 and 8 × 1016 atoms per centimeter square of the film at a voltage of 35 kV. The obtained materials were named as FeOOH, Ti-1-FeOOH, Ti-2-FeOOH, Ti-4-FeOOH and Ti-8-FeOOH, respectively. Afterwards, the titanium ion implanted β -FeOOH films were an- nealed under the same condition (

12**550 °C for 2 h and** then 800 °**C for 10 min) to**

get titanium ion implanted α -Fe2O3. The as-prepared films were labeled as Fe2O3, Ti-1-Fe2O3, Ti-2-Fe2O3, Ti-4-Fe2O3 and Ti-8- Fe2O3, respectively. 2.3. Film characterization The surface morphology of titanium ion implanted β -FeOOH and α -Fe2O3 were imaged by a ZEISS EVO MA10 SEM at a voltage of 15 kV.

21XRD patterns were collected using a PANalytical X'Pert3 X-ray

dif- fractometer between 10 and 70 degree with a tension of 40 kV and a current of 40 mA under Cu-Kα radiation (1.54 Å).

24Raman spectra were taken using a HORIBA HR800 Raman microscope with a 514-nm laser

. XPS analysis was carried out using a Thermo Fisher ESCALAB 250Xi X-ray photoelectron spectrometer, and the binding energy was calibrated by the C 1s peak at 284.6 eV.

7Transmission electron microscope (TEM; JEOL JEM-2100 F) equipped with energy- dispersive spectrometer (EDS

) was used to explore the elemental distributions and morphological changes. UV–visible absorption spectra were measured using a Shimadzu UV-3600 spectro- photometer equipped with an integrating sphere in the range from 800 to 300 nm. Photoluminescence (PL) spectra were collected with a 500-nm long-pass filter under an excitation wavelength of 450 nm by a Shimadzu RF-5301 PC spectrometer. 2.4. Electrochemical measurements All the electrochemical tests were carried out with a electro- chemical workstation (CHI 760E, Shanghai Chenhua Instruments Co., China) using a three-electrode system in which pristine or titanium ion implanted Fe2O3 film were

18used as a working electrode, Pt wire as counter electrode, and Ag/AgCI (in 3 M KCI

) connected to elec- trolyte (1 M NaOH, pH 13.6) by a salt bridge (3 M KCI) as reference electrode. The electrolyte was purged with nitrogen for 10 min be- fore all the following tests to prevent oxygen reduction reaction at the counter electrode. A working area of 0.283 cm2 of the photo- anodes was irradiated under 1-sun (100 mW/cm2, AM 1.5 G) illu- mination, which used

7a 300-W xenon lamp with an AM 1.5 filter as light source

for linear sweep voltammetry (LSV), electrochemical impedance spectroscopy (EIS), Mott-Schottky (MS) and ampero- metric i-t (I-t) measurements. LSV measurements were conducted to evaluate the PEC water oxidation performance of the as-prepared titanium implanted α - Fe2O3. The

9potential was scanned from −0.6 to 0.6 V versus Ag/AgCl at a scan rate of 10 mV s−1. The

potential versus Ag/AgCl was con- verted to the potential versus

17reversible hydrogen electrode (RHE) according to the following equation:

ERHE = EAg/AgCI + EAg/AgCI 0.059 pH + × where ERHE is the converted

potential versus RHE, E⊕Ag/AgCI is the standard electrode potential of Ag/AgCI

electrode against standard hydrogen electrode and equal to 0.210

8V at 25 °C, and EAg/AgCl is the experimentally measured potential versus Ag/AgCl electrode. For

EIS tests, an initial potential was set at 0.22

26V versus Ag/AgCI (equal to 1.23 V versus RHE

) with the frequencies ranging

18from 105 to 0.5 Hz and an amplitude voltage of 10 mV under illumination. The

collected EIS data were fitted using ZView software (Scribner and Associates Inc., USA). MS plots were collected at a frequency of 1 kHz

9from -0.6 to 0.4 V versus Ag/AgCl at an amplitude of 5 mV under dark Scheme 1. Fabrication process of

titanium ion implanted α -Fe2O3. condition. Charge carrier densities can be estimated according to the following equation: d (c12) 1 Nd = oA2e 2 × dV where Nd is donor density (in m-3), ϵ is relative permittivity (ϵ = 80 for hematite [12]), ϵ 0 is vacuum permittivity (ϵ 0 = 8.

```
1185 × 10−12 F m−1), A is the surface area
```

 $(A = 2.83 \times 10-5 \text{ m2 in this study}),$

```
34e is electronic charge (e = 1.602 × 10−19 C), c is
```

interfacial capacitance (in F), and V is the applied voltage (in V). Amperometric i-t measurements were used to assess the stability of titanium ion implanted α -Fe2O3. During the I-t tests, the bias potential was set at 0.22

```
26V versus Ag/ AgCI (equal to 1.23 V versus RHE
```

) and the measurements lasted for 5 h under illumination. A steady nitrogen flow was supplied into the cell to prevent oxygen from entering the electrolyte.

```
193. Results and discussion The fabrication process of
```

titanium plasma implanted hematite photoanodes is depicted in Scheme 1. For the preparation of tita- nium implanted α -Fe2O3, β -FeOOH films were first grown on FTO glass by using a conventional hydrothermal reaction. Afterwards, the β -FeOOH films were treated with different doses of titanium ions, subsequently converting to α -Fe2O3 by a post-annealing process under atmospheric conditions. Pristine hematite as a controlled photoanode was also synthesized in the absence of ion implantation treatments. As shown in the photographs of Supplementary Fig. S1, the color of β -FeOOH films changed from yellow to dark brown in a dose- dependent manner after titanium ion implantation treatment. The uniform color also implies well-distributed Ti ions in the β -FeOOH film. All the treated β -FeOOH films turned to red after the post-annealing process

2at 550 °C for 2 h and subsequently at 800 °C for 10 min in order to recover the

damage of lattice structure caused by ion implantation. As depicted in Fig. S2a-e, we observed that ion beam treatment could cause dose-dependent agglomeration of β- FeOOH nanorods and the formation of porous structures in the process. After calcination (Fig. 1a-e), the SEM images of titanium ion implanted α-Fe2O3 reveal that the aggregation of nanostructures give rise to large porous structure. The lateral feature size of nano- porous structures increases from 130 ± 20 nm in untreated Fe2O3 to 170 ± 20 nm in Ti-8-Fe2O3, depending on the amounts of implanted ions. Notably, the featured sizes have a significant influence on the functional properties of nanomaterials. With the report of Brillet et al. [13], hematite nanorods have been regulated to obtain a de- sired featured size of approximately 30-40 nm using a solution- based encapsulation strategy. They also indicated that smaller nanostructures are beneficial to electron-hole transfer at semi- conductor/liquid interfaces under a high bias potential, in spite of the fact that small nanostructures have negative impacts on the onset potential. Because morphological change of titanium ion im- planted α-Fe2O3 is not evident, we expect the PEC performance of hematite through morphology engineering would be modestly af- fected by ion implantation process. The XRD patterns of the materials, shown in Fig. 2a, indicate the presence of β-FeOOH before the post-annealing process. Two peaks at 11.8 and 35.2 degree are attributed to the diffraction of (110) and (211) facets of akaganeite (JCPDS No. 34-1266), respectively. High intensity of the diffraction peak at 35.2 degree implies that the growth of these nanorods is along the [211] direction [11]. After ti- tanium ion implantation, all diffraction peaks of β-FeOOH sharply decreased (Magnified in Fig. S3a-b), suggesting

3that Ti atoms have been implanted into the lattice structure of

β-FeOOH, which causes disorder in the crystal structure. After calcination at high tempera- ture, the XRD patterns of as-prepared materials (Fig. 2b) reveal the generation of α -Fe2O3 (JCPDS No. 33-0664). The peaks at 35.6 degree are ascribed to the diffraction of (211) facet [11]. Remarkably, al- though these peaks appeared in titanium ion implanted α -Fe2O3 after post-annealing, their intensities decreased compared to that of pristine α -Fe2O3 (Fig. 2c). Additionally, the XRD results do not exhibit the existence of TiO2 or ilmenite in both β-FeOOH and α -Fe2O3. Raman spectra of titanium ion implanted α -Fe2O3 (Fig. 3) have been characterized to further explore the change in crystal structure of titanium ion implanted α -Fe2O3. The intrinsic Raman peaks at 224 (A1g(1)), 243 (Eg(1)), 292 (Eg(1)), 298 (Eg(1)), 410 (Eg(1)), 497 (A1g(2)) and 610 (Eg(1)) cm-1 can be clearly detected from both pristine α -Fe2O3 and titanium ion implanted α -Fe2O3 [14]. Furthermore, the increased intensity of the peak at 660 cm-1 is attributed to the dis- order-sensitive mode (Eu) of α -Fe2O3. This mode is theoretically not Raman-active in the Raman responses of hematite, while it is Fig.

71. SEM images of titanium ion implanted α -Fe2O3

at different doses: (a)

7Fe2O3, (b) Ti-1-Fe2O3, (c) Ti-2-Fe2O3, (d

) Ti-4-Fe2O3 and (e) Ti-8-Fe2O3. recognized as a Eu(LO) mode in the infrared measurements [14]. Despite that, imperfect surface symmetry and stress-induced defects (e.g., impure atoms in lattices) can activate strong responses at 660 cm-1. Our Raman results are similar to that of Si-doped hema- tite, implying

22the incorporation of Ti atoms into the lattice of α-Fe2O3

8ratio of the peak at 660 cm-1 to the peak at 610 cm-1

in Ti-4-Fe2O3 (Table S1), which suggests a high degree of asymmetry in the bulk structure as well as considerable amounts of Ti doping in α -Fe2O3. The full survey and high-resolution XPS spectra including O 1s, Fe 2p and Ti 2p of the Ti-4-Fe2O3 specimen were characterized (Fig. 4). In the survey spectrum (Fig. 4a), in addition to Fe and O, the ele- ments including Ti, Sn, and C can also be detected. The detectable amount of Sn is possibly attributed to the diffusion of Sn from the FTO glass at high temperature [16]. The existing Ti atoms are arising from the dopants generated by titanium plasma implantation. The C 1s signal as a binding energy reference can be detected due to ad- ventitious carbon contamination during air exposure. The Fe 2p high-resolution spectrum (Fig. 4b) shows two split spin-orbit com- ponents, Fe 2p1/2 and Fe 2p3/2, located at 724.3 and 710.7 eV, re- spectively, which are quite consistent with their reported binding energies in α -Fe2O3 [17]. Besides,

29the binding energy difference between the two components is 13.5 eV

, clearly verifying the for- mation of Fe2O3 [18]. Additionally, surface

16peaks for Fe 2p1/2 and Fe 2p3/2 with high binding energies of 728.1 and 714.5 eV

have been fitted. These surface peaks could be induced by disordered atomic arrangement at the surface of materials, which probably gives rise to low electron density surrounding the Fe(III) atoms, thus requiring high energy to eventually produce photoelectrons [19]. The oxida- tion state (i.e., Fe3+) of the Fe has been confirmed by the satellite peaks of Fe 2p1/2 and Fe 2p3/2 at 732.7 and 718.2 eV, respectively [20]. The O 1s spectral region in Fig. 4c can be fitted with

32two peaks located at 530.0 and 531.4 eV, which can be assigned to lattice oxygen (Fe–O) and surface hydroxyl (O–H), respectively

[21]. Im- portantly, the Ti 2p high-resolution spectrum (Fig. 4d) displays two components, Ti 2p1/2 and Ti 2p3/2, with binding energies of 464.0 and 458.3 eV, respectively, indicating Ti(IV) atoms surrounded by oxygen atoms [22]. The difference of binding energies between

29two split spin-orbit components is 5.7 eV

, re-confirming the oxidation state (i.e., Ti4+) of the implanted titanium atoms [23]. The two shake-up peaks at 465.0 and 459.4 eV presumably result from reduced kinetic energy of photoelectrons [24]. XPS depth profiling was also per- formed to analyze elemental distribution in the implantation di- rection. The profile of Ti-4-FeOOH reveals that titanium atoms can Fig. 3. Raman spectra of titanium ion implanted α -Fe2O3 at different doses. Fig. 2. XRD patterns of titanium ion implanted materials at different doses. (a) ion implanted β -FeOOH, (b) ion implanted α -Fe2O3 after post-annealing, and (c) magni- fied view of (211) peaks for ion implanted α -Fe2O3. be implanted into β -FeOOH film at a depth of at least 180 nm (Fig S4). After the post-annealing process under atmospheric con- ditions for the formation of Ti-4-Fe2O3, more oxygen atoms were introduced into the film which can be observed by the increased oxygen percentage (Fig. 4e). The Ti/Fe atomic ratio of ~ 0.15 is also indicates a well-distributed Ti doping in the depth direction (Fig. 4f). The atomic

percentage of iron at the surface is low probably because of carbon contamination. The incorporation of Ti atoms into plasma ion implanted β - FeOOH and α -Fe2O3 was further investigated by TEM and corresponding mapping techniques. As shown in Fig. 5a, the TEM results indicate that Ti-4-FeOOH has a nanorod structure with a diameter of around 80 nm (solid blue line). Additionally, EDS mapping was used

33to evaluate the influence of direct Ti bombarding on the

spatial distribution of Fe, O and Ti elements. The signal of element Ti has been observed in an extended area of Ti-4-FeOOH, indicating that the energetic ion implantation technique enables the penetration of Ti atoms into the deep area of the material, which is consistent with the results of XPS depth profile. Besides, the mapping images also present evenly distributed Fe and O atoms in the nanostructured Ti- 4-FeOOH. After annealing the material in synthetic air, the obtained Ti-4-Fe2O3 displays an aggregated bulk-like nanostructure (Fig. 5b). The elemental mapping of Ti-4-Fe2O3 clearly reveals the presence of Ti with Fe and O, where a well-distributed Ti element has been observed in a width of ca. 400 nm. The optical absorption properties of pristine and titanium ion implanted Fe2O3 films were evaluated by UV–visible absorption spectroscopy (Fig. 6a). The spectra with an absorption onset at 600 nm exhibit a typical characteristic of hematite films. The Tauc plot $(\alpha hv)1/r \sim hv$, where α represents

8absorption coefficient of the material; h is Planck constant; v is frequency of photon; and r is

the nature of the transition and equal to 2 for indirect allowed transi- tions, can be used to estimate the bandgap of semiconductors [1]. As shown in the inset table of Fig. 6b, Tauc plots derived from the absorption spectra of as-prepared α -Fe2O3 (Fig. 6b) yield bandgaps that are largely independent of titanium ion implantation treatment, revealing an indirect bandgap of 2.05–2.06 eV for all the α -Fe2O3, which is in accordance with previous literature [3]. The Ti-dopped semiconductor

1still retained more than 95% of the initial absorption after 35 days of exposure

. Photoluminescence (PL) spectra of as- prepared pristine and titanium ion implanted α -Fe2O3 films were carried out under an excitation wavelength of 450 nm to monitor the recombination of charge carriers in the bulk and at the surface (Fig. S5). The PL emission recorded from 520 to 750 nm exhibits a broad emission peak at around 620 nm for both pristine α -Fe2O3 and titanium ion implanted α -Fe2O3, which is in line with previous re- port [25]. The PL emission, which is mainly attributed to the re- combination of photogenerated electrons and holes, could serve as an indicator to indirectly evaluate the efficiency of charge carrier transport [26]. As shown in Fig. S5, Ti-4-Fe2O3 shows the lowest PL intensity, suggesting suppressed recombination of photogenerated charge carriers due to improved diffusion rate [27], potentially leading to the enhancement of photoactivity. Further investigation on the reduced charge recombination centers in Ti-incorporated Fig. 4. XPS spectra collected from Ti-4-Fe2O3: (a) full survey, (

16b) Fe 2p, (c) O 1 s, (d) Ti 2p, (e) depth profile and (f

) Ti/Fe atomic ratio. hematite is of importance to understand the roles of doping in photoelectrodes. The charge transfer characteristic of these titanium ion im- planted α-Fe2O3 photoanodes was explored by electrochemical im- pedance spectroscopy (EIS). As shown in the Nyquist diagram (Fig. 7a), the EIS spectra

were fitted based on the equivalent circuit in the inset of Fig. 7a using Zview software [28]. The 1-RC equivalent circuit model contains a RC circuit, including a charge transfer re- sistance at electrode||electrolyte interface (Rct), a parallel double- layer capacitance (CPE), as well as a series resistance (Rs). As listed in fitting results of Table S2, hematite implanted with different doses of titanium show lower charge transfer resistance compared to that of Fig. 5. TEM and corresponding TEM-mapping images of (a) Ti-4-FeOOH and (b) Ti-4-Fe2O3. pristine α -Fe2O3, indicating that implantation-induced Ti-doping could facilitate the injection of charge carriers into electrolyte and hence enhance the performance of PEC water oxidation [29]. Among them, the optimized Ti-implanted hematite, Ti-4-Fe2O3, exhibits the smallest arc radius, illustrating lowest charge transfer resistance in the system. Moreover, the charge carrier densities of titanium ion implanted α -Fe2O3 were analyzed by Mott-Schottky (MS) measure- ments (Fig. 7b). The positive slopes in the MS plots

28reveal the n-type behavior of these photoelectrodes. The

donor densities of these semiconductors have been estimated by the slopes of the MS plots (Table S3). Among all the photoanodes, Ti-4-Fe2O3 presents the highest charge carrier density of 7.1×1026 m-3, which shows a 7.4- time increase in comparison to the pristine α -Fe2O3. The increased donor density is beneficial to the conductivity of hematite, thereby improving the collection efficiency of light-driven charge car- riers [16,30].

28To evaluate the effectiveness of titanium ion implantation, the photocurrent density-potential

curves (i.e., LSV curves) of untreated and ion implanted α-Fe2O3

7were conducted using a three-electrode configuration

in a self-designed electrochemical system (Fig. S6). While the pristine α-Fe2O3

36exhibits a low photocurrent density of 0.34 mA cm-2 at 1.23 V versus RHE

under irradiation, Ti-implanted α - Fe2O3 with a dose of 4 × 1016 atoms cm-2 treatment (i.e., Ti-4-Fe2O3) reaches a maximum photocurrent density of 0.55 mA cm-2, a ~1.6 times increase compared to pure hematite (Fig. 7c), which is consistent with the result of EIS and MS measurements. The photocurrent densities of untreated and Ti-implanted α -Fe2O3 with different ion doses at

151.23 V and 1.5 V versus RHE are summarized in Table S4. The

dark current of Ti-dopped semiconductor

1was almost no change after 10 days. The degradation of PEC performance for

Ti-dopped semiconductor

1was much slower (<5%) for the films stored under 0% RH and 50% RH after 30 days of exposure

. The Fig. 6. (a) UV–visible absorption spectra of titanium ion implanted α -Fe2O3, and (b) Tauc plots of titanium ion implanted α -Fe2O3 for the determination of the bandgaps. Fig. 7. Electrochemical measurements of pristine and Ti-implanted α -Fe2O3 at different doses: (a) electrochemical impedance spectroscopy (EIS) spectra, (b) Mott-Schottky (MS) plots, (c) linear sweep voltammetry (LSV) curves, and (d) amperometric (I-t) tests. amperometric (I-t) measurements were performed

3at a bias poten- tial of 0.22 V versus Ag/AgCl

(equal to 1.23 V versus RHE) to in- vestigate the stability of pure and Ti- implanted α -Fe2O3. As shown in Fig. 7d, the photocurrent of untreated α -Fe2O3 and as-prepared Ti plasma treated α -Fe2O3 gradually decreased in the 5-h measure- ment. Among ion implanted hematite, Ti-4-Fe2O3 preserves 65% of the initial photocurrent with the best

24current density of ~0.4 mA cm-2

after 5-h illumination, which is approximately twice as high as that of untreated α -Fe2O3. Titanium incorporation is known

3to improve the PEC water oxi- dation performance of hematite

nanostructures. Previous efforts on Ti doping strategies include hydrothermal reaction [31], solution-based deposition-annealing process [11],

3atomic layer deposition assisted solid-state diffusion

[32], and molecular beam epitaxy growth [33]. Compared with these methods, our plasma ion im- plantation strategy provides the opportunity to control the amount of Ti doping in the photo-responsive materials. The PEC performance of hematite is overall determined by three processes: photon ab- sorption, charge carrier separation and surface charge transfer. Our UV–visible absorption results together with previous works reveal

3that Ti doping has little influence on the bandgap of hematite

[31a,34]. In addition, few studies have explored the bandgap structure changes after incorporating hematite with Ti dopants, except that density function calculation results indicate a decrease of 0.2 eV of valence band edge in Ti-doped hematite [33]. We do not observe the existence of pseudobrookite, i.e. Fe2TiO5, or TiO2 in our samples, which functions to form heterojunction structure with α - Fe2O3, facilitating the separation of charge carriers [31,35], or pas- sivate surface trap states and reduce surface charge recombination in hematite [36]. The main reason for the enhanced photoactivity of Ti-doped hematite could be that Ti atoms can serve as dopants and increase the major carrier density in hematite, since one vacancy is formed with the doping of three Ti (IV) atoms [33]. The hematite phase could be well-preserved without

the appearance of co-ex- isting phase, even at high Ti doping percentage (up to 17%) [33]. Besides, the high temperature treatment (

33800 °C for 10 min) would facilitate the diffusion of Ti

atoms and further ensure a relatively uniform

3distribution of Ti atoms in hematite

[32]. 4. Conclusion In summary, an ion implantation technique was introduced to improve the PEC water oxidation performance of hematite in this study. After the post-annealing process, titanium plasma implanted β -FeOOH film was converted to titanium ion implanted α -Fe2O3 with lower charge transfer resistance and higher charge carrier density. Well-distributed Ti-doping increases charge carrier transport which simultaneously reduces the recombination of photogenerated charge carriers, therefore enhancing PEC water oxidation perfor- mance. Consequently, this work demonstrates the benefit of surface- engineered doping of hematite photoanodes using plasma ion im- plantation, along with a qualitative and quantitative understanding of impurity doping effects,

13which can provide new insights into the development of photo-responsive materials for practical applica- tions in the emerging field of hydrogen technology

. CRediT authorship contribution statement Y. P.

1and H.-Y.H. contributed to the design concept. Y. P

1 and Q. R. performed the fabrication process and measurements. All authors discussed the results and commented on the manuscript. Declaration of Competing Interest

There are no conflicts to declare.

1Acknowledgements The authors acknowledge financial support from the Research Grants Council of Hong Kong (grant no. 21203518, F-CityU106/18 and 9048121), City University of Hong Kong (grant no. 7005289, 7005580, 9680208, 9667213, 9610458 and 9052029) as well as Shenzhen Science Technology and Innovation Commission (grant no. R-IND12302). Appendix A. Supporting information Supplementary data associated with this article can be found in the online version at doi

3410.1016/j.jallcom.2021.159376. References

[1] S. Shen, S.A. Lindley, C.L. Dong, E. Chen, Y.R. Lu, J. Zhou, Y. Hu, D.A. Wheeler, P. Guo, J.Z. Zhang, D.S. Kliger, S.S. Mao, Sol. RRL (2019) 3. [2] D.A. Wheeler, G. Wang, Y. Ling, Y. Li, J.Z. Zhang, Nanostructured hematite: synthesis, characterization, charge carrier dynamics, and photoelectrochemical properties, Energy Environ. Sci. 5 (2012) 6682-6702. [3] C. Miao, T. Shi, G. Xu, S. Ji, C. Ye, Photocurrent enhancement for Ti-Doped Fe2O3Thin film photoanodes by an in situ solid-state reaction method, ACS Appl. Mater. Interfaces 5 (2013) 1310–1316. [4] (a) M. Li, Y. Yang, Y. Ling, W. Qiu, F. Wang, T. Liu, Y. Song, X. Liu, P. Fang, Y. Tong, Y. Li, Morphology and doping engineering of Sn-doped hematite nanowire photoanodes, Nano Lett. 17 (2017) 2490-2495; (b) A.G. Hufnagel, H. Hajiyani, S. Zhang, T. Li, O. Kasian, B. Gault, B. Breitbach, T. Bein, D. Fattakhova-Rohlfing, C. Scheu, R. Pentcheva, Adv. Energy Mater. 28 (2018) 1804472. [5] Z. Luo, C. Li, S. Liu, T. Wang, J. Gong, Gradient doping of phosphorus in Fe2O3nanoarray photoanodes for enhanced charge separation, Chem. Sci. 8 (2017) 91-100. [6] R. Franking, L. Li, M.A. Lukowski, F. Meng, Y. Tan, R.J. Hamers, S. Jin, Facile post- growth doping of nanostructured hematite photoanodes for enhanced photo- electrochemical water oxidation, Energy Environ. Sci. 6 (2013) 500–512. [7] (a) G. Wang, H. Zreigat, Functional coatings or films for hard-tissue applications, Materials 3 (2010) 3994–4050; (b) H.-Y. Hsu, L. Ji, M. Du, J. Zhao, T.Y. Edward, A.J. Bard, Optimization of lead-free organicinorganic Tin(II) halide perovskite semiconductors by scanning elec- trochemical microscopy, Electrochim. Acta 220 (2016) 205–210; (c) C. Dong, Y. Wang, H. Wang, C.S.K. Lin, H.-Y. Hsu, S.-Y. Leu, New generation urban biorefinery toward complete utilization of waste derived lignocellulosic biomass for biofuels and valueadded products, Energy Procedia 158 (2019) 918–925; (d) C.H. Mak, X. Huang, R. Liu, Y. Tang, X. Han, L. Ji, X. Zou, G. Zou, H.-Y. Hsu,

20Recent progress in surface modification and interfacial engineering for high- performance perovskite light-emitting diodes, Nano Energy 73 (2020) 104752

; (e) S.

5Rao, X. Zou, S. Wang, T. Shi, Y. Lu, L. Ji, H.-Y. Hsu, Q. Xu, X. Lu, Electrodeposition of porous Sn-Ni-Cu Alloy anode for lithium-ion batteries from nickel matte in deep eutectic solvents, J. Electrochem. Soc. 166 (2019) D427–D434; (f

)

4M.M.M. Bilek, A. Kondyurin, S. Dekker, B.C. Steel, R.A. Wilhelm, R. Heller, D.R. McKenzie, A.S. Weiss, M. James, W. Möller, Depth-resolved structural and compositional characterization of ion-implanted polystyrene that enables direct covalent immobilization of biomolecules, J. Phys. Chem. C 119 (2015) 16793

–16803. [8] L. Cai, F. Ren, M. Wang, G. Cai, Y. Chen, Y. Liu, S. Shen, L. Guo, V ions implanted ZnO nanorod arrays for photoelectrochemical water splitting under visible light, Int. J. Hydrog. Energy 40 (2015) 1394–1401. [9] M. Wang, F. Ren, G. Cai, Y. Liu, S. Shen, L. Guo, Activating ZnO nanorod photo- anodes in visible light by Cu ion implantation, Nano Res. 7 (2014) 353–364. [10] L. Cai, W. Zhou, F. Ren, J. Chen, G. Cai, Y. Liu, X. Guan, S. Shen, W ion implantation boosting visible-light photoelectrochemical water splitting over ZnO nanorod arrays, J. Photon. Energy 7 (2017) 016501. [11] (a) G. Wang, Y. Ling, D.A. Wheeler, K.E. George, K. Horsley, C. Heske, J.Z. Zhang, Y. Li, Facile synthesis of highly photoactive α-Fe2O3-based films for water oxi- dation, Nano Lett. 11 (2011) 3503–3509; (b) J. Zhao, H. Yin, T. Lim, H. Xie, H.-Y. Hsu, F. Forouzan, A.J. Bard, Electrodeposition of photoactive silicon films for low-cost solar cells, J. Electrochem. Soc. 163 (2016) D506–D514; (c) H.-Y. Hsu, H.-H. Hsieh, H.-Y. Tuan, J.-L. Hwang, Oxidized low density polyethylene: a potential cost-effective, stable, and recyclable polymeric encapsulant for photovoltaic modules, Sol. Energy Mater. Sol. Cells 94 (2010) 955–959; (d)

6R. Liu, C.H. Mak, X. Han, Y. Tang, G. Jia, K.-C. Cheng, H. Qi, X. Zou, G. Zou, H.- Y. Hsu, Efficient electronic coupling and heterogeneous charge transport of zero- dimensional Cs4PbBr6perovskite emitters, J. Mater. Chem. A 8 (2020) 23803–23811

; (e)

10L. Vayssieres, N. Beermann, S.-E. Lindquist, A. Hagfeldt, Controlled aqueous chemical growth of oriented three-dimensional crystalline nanorod arrays: ap- plication to iron(III) oxides, Chem. Mater. 13 (2001) 233–235

[12] C. Li, A. Li, Z. Luo, J. Zhang, X. Chang, Z. Huang, T. Wang, J. Gong, Surviving high-temperature calcination: ZrO2-induced hematite nanotubes for photoelec- trochemical water oxidation, Angew. Chem. Int. Ed. 56 (2017) 4150-4155. [13] J. Brillet, M. Grätzel, K. Sivula, Decoupling feature size and functionality in so- lution-processed, porous hematite electrodes for solar water splitting, Nano Lett. 10 (2010) 4155-4160. [14] (a) S.-H. Shim, T.S. Duffy, Raman spectroscopy of Fe2O3to 62 GPa, Am. Miner. 87 (2002) 318–326; (b) S.-S. Yi, J.-M. Yan, Q. Jiang, Carbon quantum dot sensitized integrated Fe2O3@g-C3N4core-shell nanoarray photoanode towards highly efficient water oxidation, J. Mater. Chem. A 6 (2018) 9839–9845. [15] (a) I. Cesar, K. Sivula, A. Kay, R. Zboril, M. Grätzel, Influence of feature size, film thickness, and silicon doping on the performance of nanostructured hematite photoanodes for solar water splitting, J. Phys. Chem. C 113 (2008) 772–782; (b) X. Zou, L. Ji, H.-Y. Hsu, K. Zheng, Z. Pang, X. Lu, Designed synthesis of SiC nanowire-derived carbon with dual-scale nanostructures for supercapacitor applications, J. Mater. Chem. A 6 (2018) 12724–12732. [16] H. Ma, M.A. Mahadik, J.W. Park, M. Kumar, H.S. Chung, W.S. Chae, G.W. Kong, H.H. Lee, S.H. Choi, J.S. Jang, Highly self-diffused Sn doping in α-Fe2O3nanorod photoanodes initiated from β-FeOOH nanorod/FTO by hydrogen treatment for solar water oxidation, Nanoscale 10 (2018) 22560–22571. [17] Y.Y. Fu, R.M. Wang, J. Xu, J. Chen, Y. Yan, A.V. Narlikar, H. Zhang, Synthesis of large arrays of aligned α-Fe2O3 nanowires, Chem. Phys. Lett. 379 (2003) 373–379. [18] N. Bhandary, A.P. Singh, P.P. Ingole, S. Basu, Enhanced photoelectrochemical performance of electrodeposited hematite films decorated with nanostructured NiMnOx, RSC Adv. 6 (2016) 35239-35247. [19] A.P. Grosvenor, B.A. Kobe, M.C. Biesinger, N.S. McIntyre, Investigation of multi- plet splitting of Fe 2p XPS spectra and bonding in iron compounds, Surf. Interface Anal. 36 (2004) 1564-1574. [20] M. Li, Y. Tang, W. Shi, F. Chen, Y. Shi, H. Gu, Design of visible-light-response core-shell Fe2O3/CuBi2O4heterojunctions with enhanced photocatalytic activity towards the degradation of tetracycline: Z-scheme photocatalytic me- chanism insight, Inorg. Chem. Front. 5 (2018) 3148–3154. [21] (a) M. Lucas, M. Yesilbas, A. Shchukarev, J.F. Boily, X-ray photoelectron spec- troscopy of fast-frozen hematite colloids in aqueous solutions. 6. Sodium halide (F-, Cl-, Br-, I-) Ion

binding on microparticles, Langmuir 34 (2018) 13497–13504; (b) M.K. Islam, H. Wang, S. Rehman, C. Dong, H.-Y. Hsu, C.S.K. Lin, S.-Y. Leu, Sustainability metrics of pretreatment processes in a waste derived lignocellulosic biomass biorefinery, Bioresour, Technol. 298 (2020) 122558; (c) J. Cao, Y. Wang, T. Ma, Y. Liu, Z. Yuan, Synthesis of porous hematite nanorods loaded with CuO nanocrystals as catalysts for CO oxidation, J. Nat. Gas. Chem. 20 (2011) 669-676. [22] A. Wei, X. Xie, Z. Wen, H. Zheng, H. Lan, H. Shao, X. Sun, J. Zhong, S.T. Lee, Triboelectric nanogenerator driven self-powered photoelectrochemical water splitting based on hematite photoanodes, ACS Nano 12 (2018) 8625-8632. [23] Q. Li, J. Bian, N. Zhang, D.H.L. Ng, Loading Ni(OH)2 on the Ti-doped hematite photoanode for photoelectrochemical water splitting, Electrochim. Acta 155 (2015) 383-390. [24] D. Jaeger, J. Patscheider, A complete and self-consistent evaluation of XPS spectra of TiN. J. Electron Spectrosc, Relat. Phenom, 185 (2012) 523-534, [25] F.L. Formal, N. Tétreault, M. Cornuz, T. Moehl, M. Grätzel, K. Sivula, Passivating surface states on water splitting hematite photoanodes with alumina overlayers, Chem. Sci. 2 (2011) 737-743. [26] (a) S. Shen, J. Jiang, P. Guo, C.X. Kronawitter, S.S. Mao, L. Guo, Effect of Cr doping on the photoelectrochemical performance of hematite nanorod photoanodes, Nano Energy 1 (2012) 732-741; (b) Y. Tang, C.H. Mak, R. Liu, Z. Wang, L. Ji, H. Song, C. Tan, F. Barrière, H.Y. Hsu, In situ formation of bismuth-based perovskite heterostructures for high-- performance cocatalyst-free photocatalytic hydrogen evolution, Adv. Funct. Mater. 30 (2020) 2006919. [27] (a) Y.-H. Wu, W.-R. Guo, M. Mishra, Y.-C. Huang, J.-K. Chang, T.-C. Lee, Combinatorial studies on wet-chemical synthesized Ti-doped α-Fe2O3: how does Ti4+improve photoelectrochemical activity, ACS Appl. Nano Mater. 1 (2018) 3145–3154; (b) Z. Chen, H.-Y. Hsu, M. Arca, K.S. Schanze, Triplet energy transport in pla- tinum-acetylide light harvesting arrays, J. Phys. Chem. B 119 (2014) 7198-7209; (c) C.H. Mak, R. Liu, X. Han, Y. Tang, X. Zou, H.H. Shen, Y. Meng, G. Zou, H.Y. Hsu, Thermally activated delayed phosphorescence and interchromophore exciton cou- pling in a platinum-based organometallic emitter, Adv. Opt. Mater. 8 (2020) 2001023. [28] J.Y. Kim, D.H. Youn, J.H. Kim, H.G. Kim, J.S. Lee, Nanostructure-preserved he- matite thin film for efficient solar water splitting, ACS Appl. Mater. Interfaces 7 (2015) 14123–14129. [29] (a) D. Ding, B. Dong, J. Liang, H. Zhou, Y. Pang, S. Ding, Solvothermal-etching process induced Ti-doped Fe2O3thin film with low turn-on voltage for water splitting, ACS Appl. Mater. Interfaces 8 (2016) 24573–24578; (b) T.-H. Lai, I. Constantinou, C.M. Grand, E.D. Klump, S. Baek, H.-Y. Hsu, S.-W. Tsang, K.S. Schanze, J.R. Reynolds, F. So, Evidence of molecular structure dependent charge transfer between isoindigo-based polymers and fullerene, Chem. Mater. 28 (2016) 2433-2440; (c) I. Constantinou, T.H. Lai, H.Y. Hsu, S.H. Cheung, E.D. Klump, K.S. Schanze, S.K. So, F. So, Effect of thermal annealing on charge transfer states and charge trapping in PCDTBT:PC70BM solar cells, Adv. Electron. Mater. 1 (2015) 1500167. [30] Y. Ling, G. Wang, J. Reddy, C. Wang, J.Z. Zhang, Y. Li, The influence of oxygen content on the thermal activation of hematite nanowires, Angew. Chem. Int. Ed. 51 (2012) 4074–4079. [31] (a) Z. Fu, T. Jiang, Z. Liu, D. Wang, L. Wang, T. Xie, Highly photoactive Ti-doped α-Fe2O3 nanorod arrays photoanode prepared by a hydrothermal method for photoelectrochemical water splitting, Electrochim. Acta 129 (2014) 358–363; (b) P.Y. Tang, L.J. Han, F.S. Hegner, P. Paciok, M. Biset-Peiró, H.C. Du, X.K. Wei, L. Jin, H.B. Xie, Q. Shi, Boosting photoelectrochemical water oxidation of hematite in acidic electrolytes by surface state modification, Adv. Energy Mater. 9 (2019) 1901836. [32] (a) D. Wang, H. Chen, G. Chang, X. Lin, Y. Zhang, A. Aldalbahi, C. Peng, J. Wang, C. Fan, Uniform doping of titanium in hematite nanorods for efficient photo- electrochemical water splitting, ACS Appl. Mater. Interfaces 7 (2015) 14072–14078; (b) D. Monllor-Satoca, M. Bärtsch, C. Fàbrega, A. Genç, S. Reinhard, T. Andreu, J. Arbiol, M. Niederberger, J.R. Morante, What do you do, titanium? Insight into the role of titanium oxide as a water oxidation promoter in hematite-based photoanodes, Energy Environ. Sci. 8 (2015) 3242-3254; (c) O. Zandi, T.W. Hamann, Enhanced water splitting efficiency through selec- tive surface state removal, J. Phys. Chem. Lett. 5 (2014) 1522–1526. [33] H. Magnan, D. Stanescu, M. Rioult, E. Fonda, A. Barbier, Enhanced photoanode properties of epitaxial Ti doped α-Fe2O3(0001) thin films, Appl. Phys. Lett. 101 (2012) 133908. [34] (a) K. Maabong, A.G. Machatine, B.S. Mwankemwa, A. Braun, D.K. Bora, R. Toth, M. Diale, Nanostructured hematite thin films for photoelectrochemical water splitting, Phys. B Condens. Matter 535 (2018) 67–71; (b) B. Klahr, S. Gimenez, F. Fabregat-Santiago, T. Hamann, J. Bisquert, Water oxidation at hematite photoelectrodes: the role of surface states, J. Am. Chem. Soc. 134 (2012) 4294-4302. [35] (a) P. Tang, H. Xie, C. Ros, L. Han, M. Biset-Peiró, Y. He, W. Kramer, A.P. Rodríquez, E. Saucedo, J.R. GalánMascarós, Enhanced photoelec- trochemical water splitting of hematite multilayer nanowire photoanodes by tuning the surface state via bottom-up interfacial engineering, Energy Environ. Sci. 10 (2017) 2124–2136; (b) B. Klahr, T. Hamann, Water oxidation on hematite photoelectrodes: insight into the nature of surface states through in situ spectroelectrochemistry, J. Phys. Chem. C 118 (2014) 10393–10399. [36] (a) F. Feng, C. Li, J. Jian, X. Qiao, H. Wang, L. Jia, Boosting hematite photoelec- trochemical water splitting by decoration of TiO2 at the grain boundaries, Chem. Eng. J. 368 (2019) 959–967; (b) X. Li, P.S. Bassi, P.P. Boix, Y. Fang, L.H. Wong, Revealing the role of TiO2surface treatment of hematite nanorods photoanodes for solar water splitting, ACS Appl. Mater. Interfaces 7 (2015) 16960–16966; (c) O. Zandi, T.W. Hamann, Determination of photoelectrochemical water oxi- dation intermediates on haematite electrode surfaces using operando infrared

```
30spectroscopy, Nat. Chem. 8 (2016) 778–783
```

. Y. Peng, Q. Ruan, C.H. Lam et al. Journal of Alloys and Compounds

```
2870 (2021) 159376 Y. Peng, Q. Ruan, C.H. Lam
```

et al. Journal of Alloys and Compounds

```
2870 (2021) 159376 Y. Peng, Q. Ruan, C.H. Lam
```

et al. Journal of Alloys and Compounds

```
2870 (2021) 159376 Y. Peng, Q. Ruan, C.H. Lam
```

et al. Journal of Alloys and Compounds

```
2870 (2021) 159376 Y. Peng, Q. Ruan, C.H. Lam
```

et al. Journal of Alloys and Compounds

```
2870 (2021) 159376 Y. Peng, Q. Ruan, C.H. Lam
```

et al. Journal of Alloys and Compounds

```
2870 (2021) 159376 Y. Peng, Q. Ruan, C.H. Lam
```

et al. Journal of Alloys and Compounds

```
2870 (2021) 159376 Y. Peng, Q. Ruan, C.H. Lam
```

et al. Journal of Alloys and Compounds 870 (2021) 159376 Y. Peng, Q. Ruan, C.H. Lam et al. Journal of Alloys and Compounds 870 (2021) 159376 2 3 4 5 6 7 8 9 10