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Abstract. Silica-based materials such as mesoporous silica nanoparticle MCM-41 and hollow 

mesoporous silica have been synthesized at room temperature. Several characterization 

techniques such as N2 adsorption-desorption analysis, SEM and FTIR have been employed to 

assess the formation of the nanoparticles. Rifampicin, commonly used in tuberculosis 

treatment, was selected as the target drug to assess the ability of the two nanoparticles to host 

this antibiotic. Following the loading of rifampicin on the particle surface, the dissolution 

behaviour of rifampicin in a media was investigated. Surface characterizations show HMS 

exhibits higher surface area as well as pore size and volume compared to MCM-41. However, 

rifampicin was not attached on the latter particles until it was modified with APTES. HMS 

particles store more rifampicin molecules on the particle surface than the modified MCM-41. 

The in-vitro drug release was investigated with buffer phosphate (pH=7.4) and the results 

shown that the rifampicin-loaded HMS particles were capable of releasing 18% rifampicin 

content after 77 h. Further investigation was necessary to support the promising application of 

mesoporous silica nanoparticles for pulmonary drug delivery. 

1. Introduction 

Silica-based nanoparticles has gained interest due their high performances on surface area, pore 

volume, pore size as well as loading capacity and biocompatibility [1,2]. Several mesoporous silica 

nanoparticles such as MCM-41, MCM-48, SBA, FSM and others as well their promising applications 

have well been documented [3-8]. A unique core-shell structured of mesoporous silica nanoparticles, 

i.e. hollow interior structure offers higher performance to load drugs on the particle surface [9]. This 

can help patient during chemo or tumor therapy [10] by increasing the treatment efficiency. 

In this study, two different silica-based particles, i.e. MCM-41 with hexagonal structure and hollow 

mesoporous silica particles have been investigated to assess the ability of the particles to host 

rifampicin (C43H58N4O12) as the target drug. Rifampicin is an antibiotic drug to treat tuberculosis 

disease. Previous report on rifampicin loaded on mesoporous silica nanoparticles found that methanol 

is the best solvent that allow the drug loading up to 52% [11]. However, the use of methanol may need 

to be inhibited due to the toxic reason. Therefore, we use different solvent in this study. In addition, 

we also compared different silica nanoparticle structure to assess the particles ability to attract 

rifampicin as well as their release profile from the particle surface. 
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2. Experimental 

2.1. Materials 

Cetyltrimethyl-ammonium bromide (CATB), tetra ethyl ortho silicate (TEOS) and 3-aminoprophyl 

triethoxysilane (APTES) were purchased from Sigma-Aldrich. Other reagents were analytical grade 

and were used without further purification. 

 

2.2. Procedures 

Two different silica nanoparticles were prepared in this study. Firstly, mesoporous MCM-41 was 

prepared by dissolving in CTAB in water under constant stirring, followed by the addition of sodium 

hydroxide solution (2 M) and the mixture was stirred at 80oC for 1 h. Then TEOS was added slowly 

and the mixture was further stirred for another 3 h. The solid part was separated, washed and dried in 

an oven at 328K for 24 h. Finally the particles were calcined at 823K for 5 h to remove the template. 

In this study, the name of MCM-41 was simplified to MCM. Secondly, hollow mesoporous silica 

(HMS) was prepared by mixing NaOH, PVP-K30 and CTAB prior to the addition of TEOS. The 

mixture was then put in the autoclave and heated up to 120oC for 48 h. The solid part was separated 

and dried prior to calcine the particles at 630oC for 10 h. 

Rifampicin was loaded by soaking the mesoporous silica nanoparticles into 500 mL ethanol 

solution containing 1 g of rifampicin under ultrasonic treatment for 5 min. The mixture was further 

stirred for 24 h. The solid part was separated, dried and stored for further use. The particles and 

loaded-particles were characterized using Fourier Transform Infrared (FTIR), Scanning Electron 

Microscope (SEM) and nitrogen sorption. 

For release assessment, the rifampicin-loaded particles were placed in a dialysis bag prior to 

immerse the bag in 200 mL of PBS solution containing tween 80 (pH 7.4). The solution was stirred at 

room temperature and 400 rpm for dissolution testing. 0.5 mL of dissolution samples were withdrawn 

regularly followed with media replacement. The samples were analysed by using a UV-vis 

spectrophotometer (Shimadzu, UVmini-1240). 

 

3. Results and Discussion 

3.1. MSN Characterization 

Figure 1 displays SEM micrograph of the two silica nanoparticles investigated in this study.  

 

Figure 1. Scanning electron micrographs of (a) MCM and (b) HMS 
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It can be seen that the MCM silica has spherical morphology and these spheres are uniform with sizes   

around 150 to 200 nm and they are agreeing with previous reports [11-12]. For HMS particles, the 

irregular shapes were observed with particle size around 500 nm. 

Table 1 shows the BET surface area, pore diameter and pore volume of the MCM and HMS.  

Table 1. Properties of the two synthesized particles 
Sample Surface area (m2/g) Pore size (nm) Pore volume (cm3/g) 

MCM 470 6.46 0.901 

HMS 309 2.68 0.153 

The surface area of MCM was found 470 m2/g which is lower than reported in literature [11, 13]. For 

HMS, the surface area was 309 m2/g while others reported slightly higher (410 m2/g) [12]. The pore 

size distribution of MCM and HMS particles observed at around 6.46 and 2.68 nm, thus suggesting the 

formation of mesoporous structure at the particle surface. Pore volume of MCM and HMS were 

around 0.9 and 0.15 cm3/g, respectively. Pore volume of the synthesized particles was slightly higher 

(0.7-0.8 cm3/g [13-14]) for MCM, but much lower for HMS (0.34 m3/g) [15]. 

 

3.2. Rifampicin loading and release 

Rifampicin loaded onto the particle surface was quantified by using a spectrophotometry method. The 

amount of rifampicin loaded on the particles surface is shown in figure 2.  

 

Figure 2. Rifampicin loaded on the particle surface 

As seen in figure 2 that MCM and HMS exhibited different characteristics as the host for rifampicin. 

The amount of rifampicin loaded on the MCM surface was neglected; however, the target molecule 

was successfully loaded on the surface of HMS with a capacity loading of 53 mg/100 mg. However, 

Mohseni et al. (2015) reported MCM particles can be acted as a host for rifampicin [11]. The low 

concentration of rifampicin in the release solution maybe below the detection limit of our instrument 

and thus, no rifampicin reported during our study. To improve the ability of MCM to hold rifampicin, 

the particle surface was modified with APTES [15-17]. The amount of rifampicin loaded on the MCM 

surface was around 16 mg of rifampicin/100 mg (figure 2), suggesting a considerable effect of surface 

functionalization on the uptake of rifampicin. The difference can be explained by the interactions of 

rifampicin functional groups with MCM surface. Amine modification enhances the particle surface 

charge which in turn results stronger interaction between the target molecule and the silica surface 
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[18]. Different case with MCM, HMS particles are able to host rifampicin without any surface 

modification. Different particle morphology influences the uptake of the target molecule [19]. 

To confirm the presence of rifampicin in the particle surface, the particles were subjected to FTIR 

analysis. Figure 3 shows the FTIR spectra of MCM loaded with rifampicin. The presence of carboxyl 

vibration bands at 1720 cm–1 together with C-H stretching vibrations at 2850-2950 cm–1 suggested the 

alkyl group of rifampicin has been incorporated into the host matrix. Similar results were observed for 

HMS (not shown). 

 

Figure 3. FTIR analysis of MCM and modified MCM-rifampicin 

 

3.3. Rifampicin release study 

The release studies of rifampicin from both modified MCM and HMS particles at room temperature 

were performed in inorganic solution of PBS. Figure 4 shows the cumulative release kinetics of 

rifampicin from the two particles.  

     

Figure 4. Cumulative release profiles of rifampicin from modified MCM and HMS surface 
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As seen in figure 4, the amount of rifampicin released from the particle surface was increased with 

time. However, rifampicin was released from the two particle surface with different rate. Generally, 

the release rate of rifampicin from HMS was relative rapid than the modified MCM, showing a two-

stage release pattern with a rapid initial burst release, followed with slower rate over three days. The 

initial burst observed in the first 8 h, equivalent to 8.8% of the loaded rifampicin has been released 

from HMS soaked in PBS (pH 7.4). Thereafter, slower release rate was observed until 77 h of release 

period. Total rifampicin released at this condition was 18% (equivalent to 0.49 mg rifampicin). For the 

modified MCM, rifampicin has a slower release rate. For example, at 1 h only 0.4% of rifampicin can 

be released out from the particle surface. Prolonged the period up to 8 h lets 3% rifampicin was 

observed in the solution. Finally, after 76 h the amount of rifampicin released from the particle surface 

was only 3%. The results suggest that some fraction of rifampicin loaded on the particle surface cannot 

be extracted during release experiment. Compared to other report [11] approximately 4.5 mg of 

rifampicin can be released from the mesoporous silica nanoparticles over 24 h. Design on mesoporous 

silica nanoparticles reported that particle surface decoration with organic or inorganic compounds will 

regulate the release of target drugs under specific conditions such as pH [20], chemicals [21], redox 

reaction [22], etc. Therefore, this preliminary investigation needs to be further developed to improve 

both the loading capacity and controlled release rate. 

 

4. Conclusions 

Rifampicin loading into MCM and HMS particles, followed by subsequent release test was analyzed 

to assess the effect of different mesoporous silica nanoparticles on the ability of the particles to attract 

rifampicin molecules. MCM-41 materials were not able to be acted as host for rifampicin molecules 

and thus, amine-functionalization of MCM-41 has enhanced the loading capacity of rifampicin by 

16%. In the case of pure HMS, the particle surface attracts rifampicin molecules 3.3 times than the 

functionalized MCM. Accordingly, the release rate of rifampicin from HMS surface was observed 

much higher. Further analysis was necessary to be investigated to get insight of study of particle 

morphology for drug delivery. However, the results observed here suggest the particles can be further 

investigated to be able to act as a drug delivery control, especially for pulmonary treatment. 
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