RESEARCH FINAL REPORT

NANOCRYSTALLINE CELLULOSE FROM OIL PALM EMPTY FRUIT BUNCHES AS DRUG CARRIER

Submitted by:

Fransisca Stephanie NRP. 5203015014

Chiesa Valentino NRP. 5203015021

DEPARTMENT OF CHEMICAL ENGINEERING
FACULTY OF ENGINEERING
WIDYA MANDALA CATHOLIC UNIVERSITY
SURABAYA
2018

LETTER OF APPROVAL

Seminar of RESEARCH PROJECT for student with indentity below:

Name : Chiesa Valentino NRP : 5203015021

has been conducted on May 25th 2018, therefore the student has fulfilled one of several requirements to obtain **Bachelor of Engineering** degree in Chemical Enginnering Department, Faculty of Engineering, Widya Mandala Catholic University Surabaya.

Surabaya, June 5th 2018 Co-Supervisor Felycia Edi S., Ph.D., IPM NIK. 521.99.0391 NIK. 521.93.0198 Committees Chairman Sandy Budi H., Ph.D., IPM. NIK. 521.99.0401 NIK. 521.93.0198 Member Member Member Shella P. S., Ph.D. Felvcia E. Wenny Trawaty, Ph.D., IPM. NIK. 521.97.0284 NIK. 521.17.0424 NIK. 521.99.0391 Authorized by Allis WIDYA R. Expunering Faculty Engineering D partment

ii

LETTER OF APPROVAL

Seminar of RESEARCH PROJECT for student with indentity below:

Name : Fransisca Stephanie

NRP : 5203015014

has been conducted on May 25th 2018, therefore the student has fulfilled one of several requirements to obtain **Bachelor of Engineering** degree in Chemical Engineering Department, Faculty of Engineering, Widya Mandala Catholic University Surabaya.

Surabaya, June 5th 2018

Supervisor o-Supervisor Ir. Survadi Ismadii, Ph.D. Felycia Edi S., Ph.D., IPM. NIK. 521.93.0198 NIK. 521,99,0391 Committees Chairman Sandy Budi H., Ph.D., IPM. NIK. 521.99,0401 NIK. 521.93.0198 Member Member 4ember Wenny Irawaty, Ph.D., IPM. Shella P. S., Ph.D. Felycia E. NIK. 521.17.0424 NIK. 521.97.0284 NIK. 521,99,0391 Authorized by Head of Chemica e Faculty Engineering Departs

COPY RIGHT AGREEMENT

In order to support the development of science and technology, I am as the student of Widya Mandala Surabaya Catholic University:

Name

: Fransisca Stephanie

Student UD

: 5203015014

Agree to transfer the copyright of my thesis/paper:

Title:

Nanocrystalline Cellulose from Oil Palm Empty Fruit Bunches as Drug Carrier

To be published in internet or other media (Digital Library of Widya Mandala Surabaya Catholic University) for academic pupose according to copyright law in Indonesia.

COPY RIGHT AGREEMENT

In order to support the development of science and technology, I am as the student of Widya Mandala Surabaya Catholic University:

Name

: Chiesa Valentino

Student UD

: 5203015021

Agree to transfer the copyright of my thesis/paper:

ERAI

Title:

Nanocrystalline Cellulose from Oil Palm Empty Fruit Bunches as Drug Carrier

To be published in internet or other media (Digital Library of Widya Mandala Surabaya Catholic University) for academic pupose according to copyright law in Indonesia.

Surabaya, June 6th 2018

Author,

Chiesa Valentino

NRP. 5203015021

LETTER OF DECLARATION

I declare that this esearch was my own work and does not contain any material that belongs to the others, unless it was stated in the references. Should it is known that this research belongs to the others. I aware and accept the consequences that this research cannot be used as a requirement to achieve a **Bachelor of Engineering** degree.

Surabaya, June 6th 2018 Student.

NRP. 5203015014

LETTER OF DECLARATION

I declare that this esearch was my own work and does not contain any material that belongs to the others, unless it was stated in the references. Should it is known that this research belongs to the others. I aware and accept the consequences that this research ennot be used as a requirement to achieve a **Bachelor of Engineering** degree.

Surabaya, June 6th 2018

Student.

Chiesa Valentino

NRP. 5203015021

PREFACE

The authors would like to thank God for His blessing that the Research Project entitled Nanocrystalline From Oil Palm Empty Fruit Bunches as Drug Carrier has been accomplished. This report is a prerequisite in achieving Bachelor of Engineering degree in Chemical Engineering.

The authors realize that the completion of this report is achieved by the help of many people. There for, the authors would like to thank the persons below:

- Suryadi Ismadji, Ph.D as Principal Supervisor and Felycia Edi Soetaredjo, Ph.D as Co-Supervisor
- 2. Sandy Budi Hartono, Ph.D as Head of the Committees, Wenny Irawati, Ph.D and Shella P.S., Ph.D as members of committees
- Felycia Edi Soetaredjo, Ph.D as the Head of Chemical Engineering Process laboratory and Dra. Adriana Anteng Anggorowati, M.Si. as the Head of Chemical Analysis Laboratory
- Mr. Novi as laborant of Chemical Engineering Process Laboratory and Mr. Pudjo as laborant of Chemical Engineering Operation Laboratory.
- 5. Sandy Budi Hartono, Ph.D as Head of Chemical Engineering Department
- 6. Suryadi Ismadji, Ph.D as Dean of Engineering Faculty
- 7. Our parents and family who have given a lot of help and support, both materially and morally
- 8. Our lecturers, friends and also those who are too many to be listed by name that had contributed their kind assistance

The authors realize that this report is far from perfect, therefore any critics and comments which will better improve the research is gladly accepted. Lastly the authors hope that the report will be useful to all readers who need information regarding the research of the report.

Surabaya, 6th June 2018

The authors

TABLE OF CONTENTS

		PROVAL	
		GREMENT	
LETTER O	F DE	CLARATION	vi
PREFACE			viii
TABLE OF	CON	NTENTS	X
		URES	
		BLES	
CHAPTER	I	INTRODUCTION	1
	I.1	Background	1
	I.2		
	I.3.		
CHAPTER	II L	ITERATURE REVIEW	3
	II.1	\mathcal{C}	
	II.2	Oil Palm Empty Fruit Bunches	5
	II.3	Delignification	
	II.4	Acid Hydrolysis	7
	II.5	Adsorption	
	II.6	Adsorption and Desorption Kinetic	11
	II.7	Tetracycline	15
CHAPTER	III E	XPERIMENTAL METHOD	13
	III.1	Design of Experiment	13
		Materials and Equipments	
	III.3	Process Variables	16
		Experimental Procedures	
CHAPTER		ESULT AND DISCUSSION	
	IV.1	. Pre-treatment (Delignification)	28
		. Acid Hydrolysis	
		. FTIR Analysis	
		. Adsorption Kinetics	
	IV.5	. Desorption Kinetic	37
		. Isothermal Adsorption	
CHAPTER		ONCLUSION AND RECOMMENDATION	
		Conclusion	
		Recommendation	
REFERENC	CES.		44
APPENDIX	ΚВ		52
APPENDIX	КС		57

APPENDIX D	60
APPENDIX E	61
APPENDIX F	63
APPENDIX G	65
APPENDIX H	68

TABLE OF FIGURES

Figure II.1. Molecular Structure of Cellulose	6
Figure III.1. Flow Diagram of NCC Production	17
Figure III.2. Flow Diagram of tetracycline adsorption and des	orption
	18
Figure III.3. Flow Diagram of adsorption isotherm of tetracyc	line
antibiotic	19
Figure IV.1. OPEFB after acetic acid peroxide and ADS	30
Figure IV.2. The yield of NCC Production	31
Figure IV.3. Main Effects Plot for Means	32
Figure IV.4. FTIR Spectrum of NCC	33
Figure IV.5. Graph of Pseudo First-Order Kinetic Adsorption	
	35
Figure IV.6. Graph of Pseudo Second-Order Kinetic Adsorpti	on
	36
Figure IV.7. Graph of Pseudo First-Order Kinetic Desorption	
	37
Figure IV.8. Graph of Pseudo Second-Order Kinetic Desorption	on
	38
Figure IV.9. Graph of Freundlich Adsorption Isotherm	39
Figure IV.10. Graph of Langmuir Adsorption Isotherm	40
Figure IV.11. Graph of Temkin Adsorption Isotherm	41
Figure A.1 . H ₂ SO ₄ 45% with ratio 1:15(w/v)	32
Figure A.2 . H ₂ SO ₄ 45% with ratio 1:30(w/v)	33
Figure A.3 . H ₂ SO ₄ 64% with ratio 1:15(w/v)	33
Figure A.4 . H ₂ SO ₄ 64% with ratio 1:30(w/v)	33
Figure A.5 . H ₂ SO ₄ 80% with ratio 1:15(w/v)	34

Figure A.6 . H ₂ SO ₄ 80% with ratio 1:30(w/v)	34
Figure E.1. Maximum Wavelength Determination	61
Figure E.2. Standard Curve of Tetracycline	62

TABLE OF TABLES

Table II.1. Advantages and Disadvantages of Various Methods	s of NCC
Isolation	5
Table II.2. The composition of OPEFB	8
Table II.3. Various Delignification Processes	9
Table IV.1. Van Soest Analysis of OPEFB	28
Table IV.2. The yield of NCC Production	30
Table IV.3. Table of Response for Means	31
Table IV.4. Selected Functional Group of NCC	33
Table IV.5. Parameter of Pseudo first-order and Pseudo second	d-order of
adsorption kinetic of tetracycline into NCC	34
Table VI.6. Parameter of Pseudo First-order and Pseudo secon	d-order of
Desorption Kinetic of Tetracycline into NCC	37
Table VI.7. Parameter of Various Adsorption Isotherm of Tetr	acycline
into NCC	39
Table C.1. Van Soest Analysis of OPEFB Before Delignificati	on
	. 57
Table C.2. Van Soest Analysis of OPEFB After Delignificatio	n with
Acetic Acid Peroxide	58
Table C.3. Van Soest Analysis of OPEFB After Delignificatio	n with
Acetic Acid Peroxide and ADS	58
Table D.1. Mass of Cellulose from OPEFB to Produce NCC .	60
Table D.2. Mass of NCC at manipulated variable	60
Table D.1. The yield of NCC Production	60
Table E.1. Absorbance Value from Certain Concentration of	
Tetracycline Solution	62

Table F.1. The Adsorption Kinetic Data	63
Table G.1. Desorption Kinetic Data (pH=3)	65
Table G.2. Desorption Kinetic Data (pH=7)	66
Table H.1. The Adsorption Isotherm Data	68

ABSTRACT

The application of nanocrystalline cellulose (NCC) as drug delivery is studied in last six years, having advantages such as non-toxic, high biocompatibility, biodegradable, and high area to volume ratio making NCC good drug delivery agent. Nanocrystalline cellulose is a renewable nano size material from cellulose, which can be obtained from various bio waste. Oil palm empty fruit bunches (OPEFB) can be used as cellulose resources because of its abundant availability in Indonesia and high cellulose content.

In this research, NCC for drug delivery is obtained from OPEFB through delignification and acid hydrolysis process. The effect of temperature and time in Acid hydrolysis process on yield of NCC will investigated. The performance of nanocrystalline cellulose from oil palm empty fruit bunch as drug delivery will be researched using adsorption-desorption kinetic method under simulated body fluid and its drug adsorption capacity will be investigated using isotherm adsorption method.