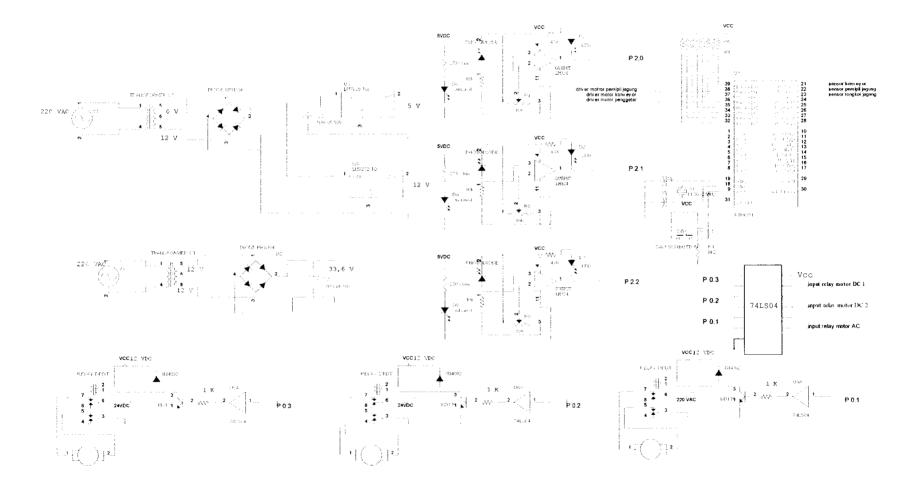
LAMPIRAN

٠.

PROGRAM LIST

١.

۰.


; ; ;	Program Alat Pemipil Jagung Otomatis Berbasis Mikrokontroler Windi Hapsari (5103002026)					
sensor_1 sensor_2	С	equ equ p2.0 p2.1	p0.1	; untuk menjatuhkan jagung ; untuk memipil jagung ; untuk menjalankan conveyor		
delay_1 delay_2 delay_3		16h 17h 18h				
mov p call D call D call D call D call D awal: clr n ulang1: jb call d jb setb n clr n	DELAY_1S DELAY_1S DELAY_1S DELAY_1S DELAY_1S DELAY_1S notor_getar senso elaylama	or_1,ular	ng l			
jb setb n	elaylama	or_2,\$ or_2,ular eyor	ng2			
ulang3: jb	senso	or_3,\$				

jb setb	delaylama sense motor_ac awal	or_3,ulan	.g3		
djnz r djnz r	mov r2,#5 dlama1:mov dlama2:mov	-			
DELAY	₹_1 \$:	MOV	Delay_3,#8	
DELAY DELAY		:	MOV DJNZ DJNZ	Delay_2,#255 Delay_1,#225 Delay_1,\$ Delay_2,DELAY2 Delay_3,DELAY1	

end

¥,.

Gambar Rangkaian Lengkap

BD135/137/139

Medium Power Linear and Switching Applications

Complement to BD136, BD138 and BD140 respectively

1 TO-126 1. Emitter 2.Collector 3.Base

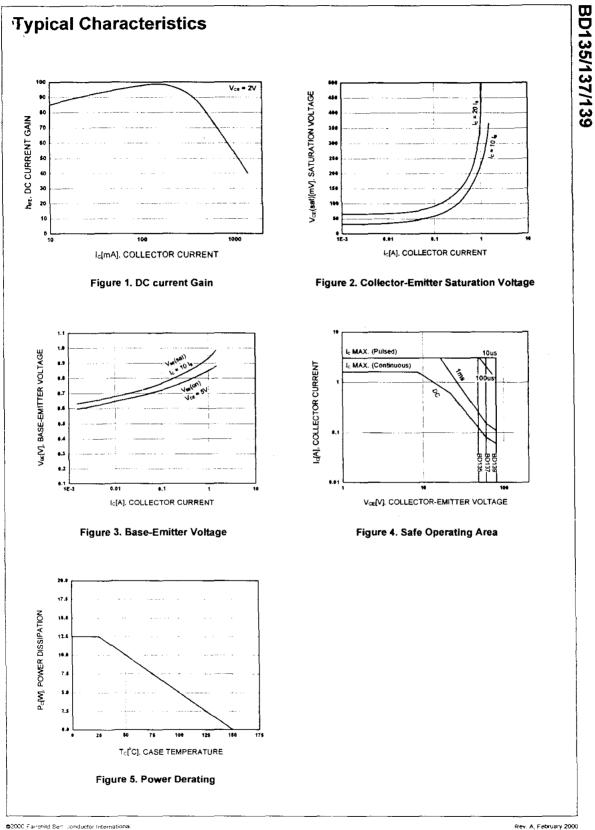
NPN Epitaxial Silicon Transistor

Absolute Maximum Ratings Tc=25°C unless otherwise noted

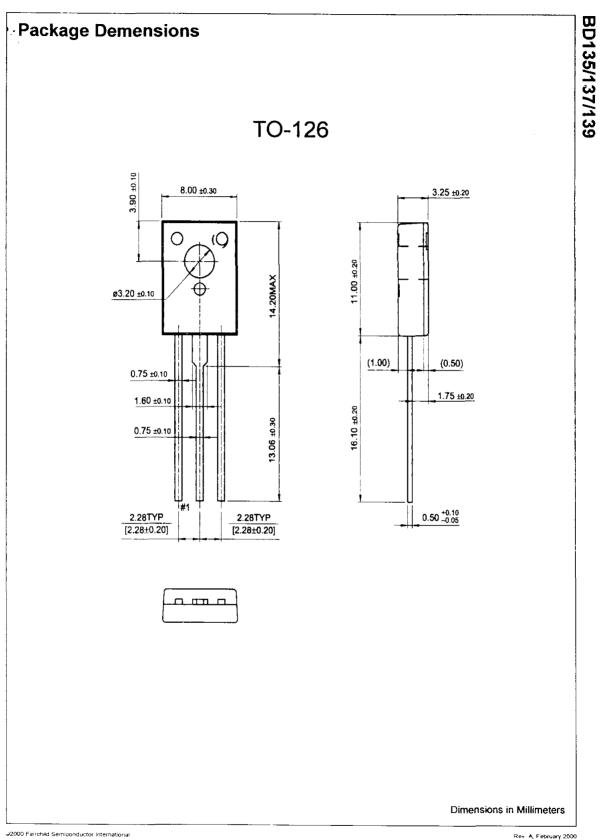
Symbol	Para	meter	Value	Units
V _{CBO}	Collector-Base Voltage	: BD135	45	V
		: BD137	60	V
		: BD139	80	V
V _{CEO}	Collector-Emitter Voltage	: BD135	45	V
		: BD137	60	V
		: BD139	80	V
VEBO	Emitter-Base Voltage		5	V
lc	Collector Current (DC)		1.5	A
ICP	Collector Current (Pulse)		3.0	A
l _B	Base Current	<u></u>	0.5	A
Pc	Collector Dissipation (T _C =25°C	C)	12.5	w
P _C	Collector Dissipation (Ta=25°C	;)	1.25	w
P _C T _j	Junction Temperature		150	0°
T _{STG}	Storage Temperature		- 55 ~ 150	°C

Electrical Characteristics Tc=25°C unless otherwise noted

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Units
V _{CEO} (sus)	Collector-Emitter Sustaining Voltage		1			
0201	: BD135	$l_{\rm C} = 30 {\rm mA}, l_{\rm B} = 0$	45		i i	V
	: BD137		60		l	l v
	: BD139		80			V
I _{СВО}	Collector Cut-off Current	$V_{CB} = 30V, I_E = 0$	1		0.1	μA
I _{EBO}	Emitter Cut-off Current	$V_{EB} = 5V, I_{C} = 0$			10	μA
h _{FE1}	DC Current Gain : ALL DEVICE	$V_{CE} = 2V, t_{C} = 5mA$	25		1	
h _{FE2}	: ALL DEVICE	$V_{CE} = 2V, I_{C} = 0.5A$	25			
h _{FE3}	: BD135	$V_{CE} = 2V, I_{C} = 150 \text{mA}$	40		250	
	: BD137, BD139		40		160	
V _{CE} (sat)	Collector-Emitter Saturation Voltage	I _C = 500mA, I _B = 50mA	1	1	0.5	V
V _{BE} (on)	Base-Emitter ON Voltage	$V_{CE} = 2V, I_{C} = 0.5A$	1		1	V


h_{FE} Classification

Classification	6	10	16
h _{FE3}	40 ~ 100	63 ~ 160	100 ~ 250


©2000 Fairchiki Semiconductor International

Rev. A. February 2000

BD135/137/139

Rev. A, February 2000

Rev. A. February 2000

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx[™] Bottomless[™] CoolFET[™] CROSSVOLT[™] E²CMOS[™] FACT[™] FACT Quiet Series[™] FAST[®] FAST[®] FASTr[™] GTO[™] HiSeC[™] ISOPLANAR[™] MICROWIRE[™] POP[™] PowerTrench[®] QFET[™] QS[™] Quiet Series[™] SuperSOT[™]-3 SuperSOT[™]-6 SuperSOT™-8 SyncFET™ TinyLogic™ UHC™ VCX™

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR INTERNATIONAL.

As used herein:

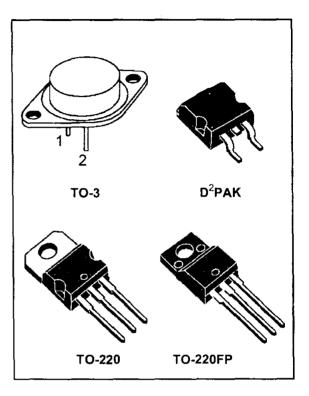
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

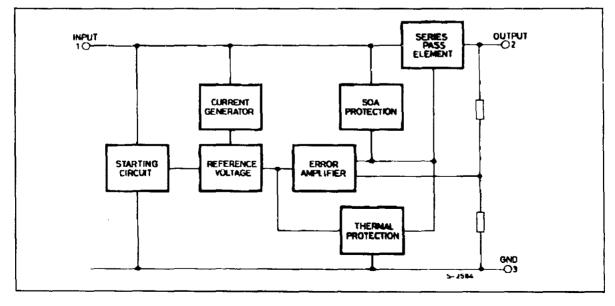
PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.


L7800 SERIES

POSITIVE VOLTAGE REGULATORS

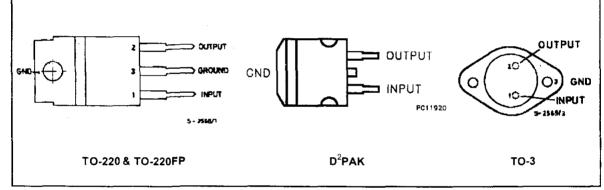

- OUTPUT CURRENT UP TO 1.5 A
- OUTPUT VOLTAGES OF 5; 5.2; 6; 8; 8.5; 9; 12; 15; 18; 24V
- THERMAL OVERLOAD PROTECTION
- SHORT CIRCUIT PROTECTION
- OUTPUT TRANSITION SOA PROTECTION

DESCRIPTION

The L7800 series of three-terminal positive regulators is available in TO-220 TO-220FP TO-3 and D^2PAK packages and several fixed output voltages, making it useful in a wide range of applications. These regulators can provide local on-card regulation, eliminating the distribution problems associated with single point regulation. Each type employs internal current limiting, thermal shut-down and safe area protection, making it essentially indestructible. If adequate heat sinking is provided, they can deliver over 1A output current. Although designed primarily as fixed voltage regulators, these devices can be used with external components to obtain adjustable voltages and currents.

BLOCK DIAGRAM

November 2000

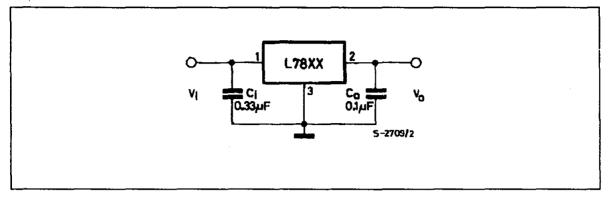

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
Vi	DC Input Voltage (for $V_0 = 5$ to 18V) (for $V_0 = 20, 24V$)	35 40	V V
10	Output Current	Internally limited	
Ptot	Power Dissipation	Internally limited	1
Top	Operating Junction Temperature Range (for L7800) (for L7800C)	-55 to 150 0 to 150	°C °C
Tstg	Storage Temperature Range	-65 to 150	°C

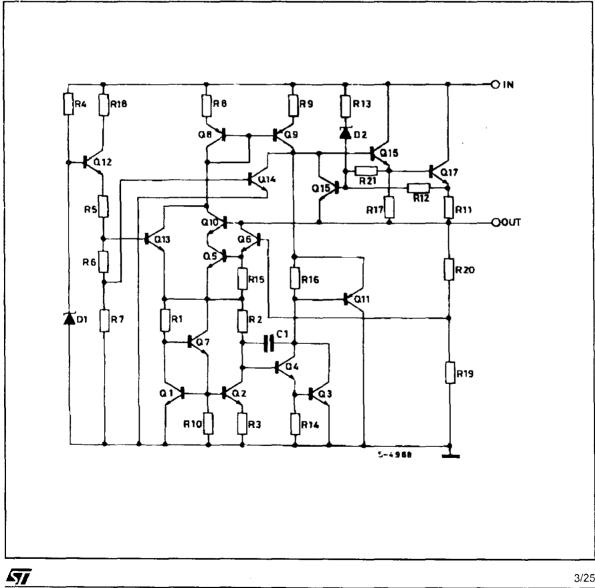
THERMAL DATA

Symbol	Parameter		D ² PAK	TO-220	TO-220FP	TO-3	Unit
R _{thj-case}	Thermal Resistance Junction-case	Max	3	3	5	4	°C/W
R _{thj-amb}	Thermal Resistance Junction-ambient	Max	62.5	50	60	35	°C/W

CONNECTION DIAGRAM AND ORDERING NUMBERS (top view)



Туре	TO-220	D ² PAK (*)	TO-220FP	TO-3	Output Voltage
L7805				L7805T	5V
L7805C	L7805CV	L7805CD2T	L7805CP	L7805CT	5V
L7852C	L7852CV	L7852CD2T	L7852CP	L7852CT	5.2V
L7806				L7806T	6V
L7806C	L7806CV	L7806CD2T	L7806CP	L7806CT	6V
L7808				L7808T	8V
L7808C	L7808CV	L7808CD2T	L7808CP	L7808CT	8V
L7885C	L7885CV	L7885CD2T	L7885CP	L7885CT	8.5V
L7809C	L7809CV	L7809CD2T	L7809CP	L7809CT	9V
L7812				L7812T	12V
L7812C	L7812CV	L7812CD2T	L7812CP	L7812CT	12V
L7815				L7815T	15V
L7815C	L7815CV	L7815CD2T	L7815CP	L7815CT	15∨
L7818				L7818T	18∨
L7818C	L7818CV	L7818CD2T	L7818CP	L7818CT	18∨
L7820				L7820T	20V
L7820C	L7820CV	L7820CD2T	L7820CP	L7820CT	20∨
L7824				L7824T	24∨
L7824C	L7824CV	L7824CD2T	L7824CP	L7824CT	24∨


57

(*) AVAILABLE IN TAPE AND REEL WITH "-TR" SUFFIX

ARPLICATION CIRCUIT

SCHEMATIC DIAGRAM

TEST CIRCUITS

Figure 1 : DC Parameter

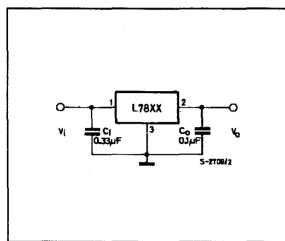


Figure 3 : Ripple Rejection.

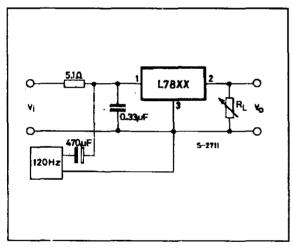
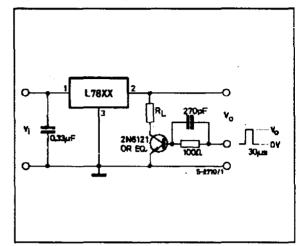



Figure 2 : Load Regulation.

57

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Vo	Output Voltage	$T_j \approx 25 ^{\circ}C$	4.8	5	5.2	V
Vo	Output Voltage	$I_o = 5 \text{ mA to 1 A}$ $P_o \le 15 \text{ W}$ V _i = 8 to 20 V	4.65	5	5.35	V
ΔV_0^{\star}	Line Regulation	$V_i = 7 \text{ to } 25 \text{ V}$ $T_i = 25 ^{\circ}\text{C}$ $V_i = 8 \text{ to } 12 \text{ V}$ $T_j = 25 ^{\circ}\text{C}$		3 · 1	50 25	m∨ mV
ΔV_0^*	Load Regulation	$I_o = 5 \text{ to } 1500 \text{ mA}$ $T_j = 25 ^{\circ}\text{C}$ $I_o = 250 \text{ to } 750 \text{ mA}$ $T_j = 25 ^{\circ}\text{C}$			100 25	mV mV
la	Quiescent Current	$T_j = 25 ^{\circ}C$			6	mA
Δld	Quiescent Current Change	I _o = 5 to 1000 mA			0.5	mA
Δld	Quiescent Current Change	V _i = 8 to 25 V		[0.8	mA
$\frac{\Delta V_o}{\Delta T}$	Output Voltage Drift	I _o = 5 mA		0.6		mV/⁰C
eN	Output Noise Voltage	B = 10Hz to 100KHz T _j = 25 °C		1	40	μV/Vo
SVR	Supply Voltage Rejection	Vi = 8 to 18 V f = 120 Hz	68	1		dB
Vd	Dropout Voltage	$I_0 = 1 A$ $T_j = 25 °C$		2	2.5	V
Ro	Output Resistance	f = 1 KHz		17		mΩ
Isc	Short Circuit Current	$V_i = 35 V$ $T_j = 25 °C$		0.75	1.2	A
Iscp	Short Circuit Peak Current	$T_j = 25 ^{\circ}C$	1.3	2.2	3.3	A

ELECTRICAL CHARACTERISTICS FOR L7805 (refer to the test circuits, $T_j = -55$ to $150 \,^{\circ}$ C, $V_i = 10V$, $I_0 = 500$ mA, $C_i = 0.33 \,\mu$ F, $C_0 = 0.1 \,\mu$ F unless otherwise specified)

ELECTRICAL CHARACTERISTICS FOR L7806 (refer to the test circuits, T_j = -55 to 150 °C,

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _o	Output Voltage	T _j = 25 °C	5.75	6	6.25	V
Vo	Output Voltage	$I_o = 5 \text{ mA to 1 A}$ $P_o \le 15 \text{ W}$ V _i = 9 to 21 V	5.65	6	6.35	V
ΔV _o *	Line Regulation	$V_i = 8 \text{ to } 25 \text{ V}$ $T_j = 25 ^{\circ}\text{C}$ $V_i = 9 \text{ to } 13 \text{ V}$ $T_j = 25 ^{\circ}\text{C}$			60 30	m∨ mV
ΔVo*	Load Regulation	$I_0 = 5 \text{ to } 1500 \text{ mA}$ $T_j = 25 ^{\circ}\text{C}$ $I_0 = 250 \text{ to } 750 \text{ mA}$ $T_j = 25 ^{\circ}\text{C}$			100 30	m∨ mV
١ _d	Quiescent Current	T _j = 25 °C			6	mA
Δld	Quiescent Current Change	I _o = 5 to 1000 mA	1		0.5	mA
Δld	Quiescent Current Change	V _i = 9 to 25 V			0.8	mA
$\frac{\Delta V_o}{\Delta T}$	Output Voltage Drift	l _o = 5 mA		0.7		mV/°C
eN	Output Noise Voltage	B = 10Hz to 100KHz $T_j = 25 °C$			40	μV/Vo
SVR	Supply Voltage Rejection	$V_i = 9 \text{ to } 19 \text{ V}$ f = 120 Hz	65		1	dB
Vd	Dropout Voltage	$I_0 = 1 A$ $T_i = 25 °C$		2	2.5	V
Ro	Output Resistance	f = 1 KHz		19	1	mΩ
lsc	Short Circuit Current	$V_i = 35 V$ $T_j = 25 °C$		0.75	1.2	A
Iscp	Short Circuit Peak Current	T _j = 25 °C	1.3	2.2	3.3	A

 * Load and line regulation are specified at constant junction temperature. Changes in V₀ due to heating effects must be taken into account separately. Pulce testing with low duty cycle is used.

<u> 77</u>

atures

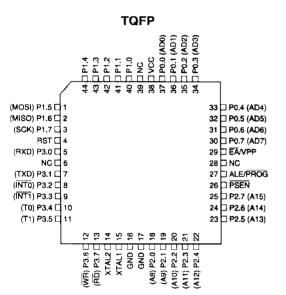
mpatible with MCS-51[®] Products Bytes of In-System Programmable (ISP) Flash Memory - Endurance: 1000 Write/Erase Cycles V to 5.5V Operating Range Ily Static Operation: 0 Hz to 33 MHz ree-level Program Memory Lock 8 x 8-bit Internal RAM **Programmable I/O Lines** No 16-bit Timer/Counters x Interrupt Sources II Duplex UART Serial Channel w-power Idle and Power-down Modes terrupt Recovery from Power-down Mode atchdog Timer al Data Pointer wer-off Flag st Programming Time exible ISP Programming (Byte and Page Mode)

scription

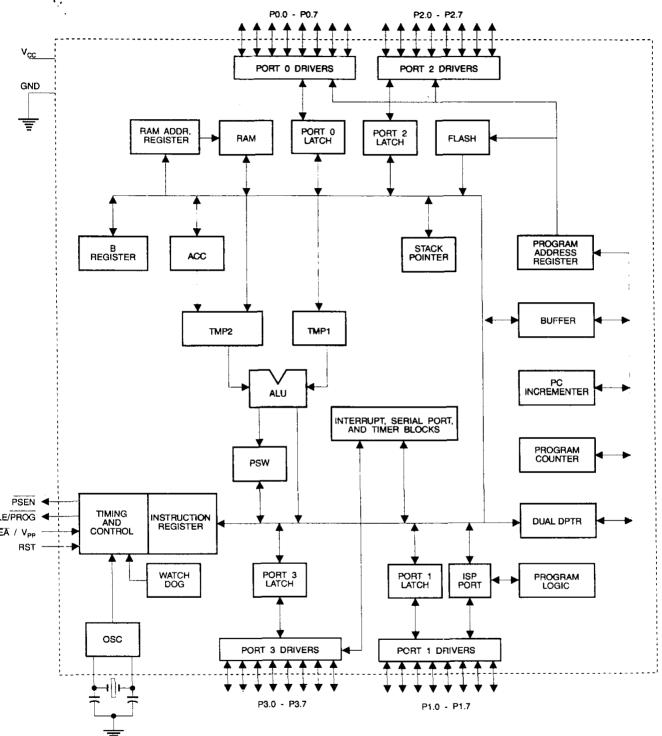
AT89S51 is a low-power, high-performance CMOS 8-bit microcontroller with 4K is of in-system programmable Flash memory. The device is manufactured using el's high-density nonvolatile memory technology and is compatible with the industandard 80C51 instruction set and pinout. The on-chip Flash allows the programmory to be reprogrammed in-system or by a conventional nonvolatile memory pronumer. By combining a versatile 8-bit CPU with in-system programmable Flash on a polithic chip, the Atmel AT89S51 is a powerful microcontroller which provides a ly-flexible and cost-effective solution to many embedded control applications.

AT89S51 provides the following standard features: 4K bytes of Flash, 128 bytes of *I*, 32 I/O lines, Watchdog timer, two data pointers, two 16-bit timer/counters, a fiveor two-level interrupt architecture, a full duplex serial port, on-chip oscillator, and k circuitry. In addition, the AT89S51 is designed with static logic for operation in to zero frequency and supports two software selectable power saving modes. Idle Mode stops the CPU while allowing the RAM, timer/counters, serial port, and rrupt system to continue functioning. The Power-down mode saves the RAM cons but freezes the oscillator, disabling all other chip functions until the next external rrupt or hardware reset.

8-bit Microcontroller with 4K Bytes In-System Programmable Flash


AT89S51

Preliminary


n Configurations

17				
,	PDIP		PLCC	
P1.0 P1.1 P1.2 P1.3 P1.4 (MOSI) P1.5 (MISO) P1.5 (SCK) P1.5 RST (SCK) P1.5 RST (RXD) P3.0 (TXD) P3.1	1 40 2 39 3 38 4 37 5 36 6 35 7 34 8 33 9 32 10 31 11 30	 VCC P0.0 (AD0) P0.1 (AD1) P0.2 (AD2) P0.3 (AD3) P0.4 (AD4) P0.5 (AD5) P0.6 (AD6) P0.7 (AD7) EA/VPP ALE/FROG 	PLCC (MOSI) P1.5 7 (MSO) P1.5 7 (MSO) P1.5 7 (CMSO) P1.5 7 (C	5 (AD5) 6 (AD6) 7 (AD7) VPP
(INTO) P3.2 [(INT1) P3.3 [(TO) P3.4 [(T1) P3.5 [(Wħ) P3.6 [(RD) P3.7 [XTAL2 [XTAL1] GND [13 28 14 27 15 26 16 25 17 24 18 23 19 22	□ PSEN □ P2.7 (A15) □ P2.6 (A14) □ P2.4 (A12) □ P2.3 (A11) □ P2.2 (A10) □ P2.1 (A9) □ P2.0 (A8)	(INTO) P3.2 114 (INTO) P3.2 114 (INTT) P3.3 15 (TO) P3.4 16 (TO) P3.4 16 (TO) P3.4 17 (TO) P3.4 17 (TO) P3.5 17 (TO) P3.	7 (A15) 6 (A14)

AT89S51

ock Diagram

Description

+ 2

rt 3

- Supply voltage.
- D Ground.
- t 0 Port 0 is an 8-bit open drain bidirectional I/O port. As an output port, each pin can sink eight TTL inputs. When 1s are written to port 0 pins, the pins can be used as high-impedance inputs.

Port 0 can also be configured to be the multiplexed low-order address/data bus during accesses to external program and data memory. In this mode, P0 has internal pull-ups.

Port 0 also receives the code bytes during Flash programming and outputs the code bytes during program verification. External pull-ups are required during program verification.

t 1 Port 1 is an 8-bit bidirectional I/O port with internal pull-ups. The Port 1 output buffers can sink/source four TTL inputs. When 1s are written to Port 1 pins, they are pulled high by the internal pull-ups and can be used as inputs. As inputs, Port 1 pins that are externally being pulled low will source current (I_{1L}) because of the internal pull-ups.

Port 1 also receives the low-order address bytes during Flash programming and verification.

Port Pin	Alternate Functions	
P1.5	MOSI (used for In-System Programming)	
P1.6	MISO (used for In-System Programming)	
P1.7	SCK (used for In-System Programming)	

Port 2 is an 8-bit bidirectional I/O port with internal pull-ups. The Port 2 output buffers can sink/source four TTL inputs. When 1s are written to Port 2 pins, they are pulled high by the internal pull-ups and can be used as inputs. As inputs, Port 2 pins that are externally being pulled low will source current ($I_{\rm H}$) because of the internal pull-ups.

Port 2 emits the high-order address byte during fetches from external program memory and during accesses to external data memory that use 16-bit addresses (MOVX @ DPTR). In this application, Port 2 uses strong internal pull-ups when emitting 1s. During accesses to external data memory that use 8-bit addresses (MOVX @ RI), Port 2 emits the contents of the P2 Special Function Register.

Port 2 also receives the high-order address bits and some control signals during Flash programming and verification.

Port 3 is an 8-bit bidirectional I/O port with internal pull-ups. The Port 3 output buffers can sink/source four TTL inputs. When 1s are written to Port 3 pins, they are pulled high by the internal pull-ups and can be used as inputs. As inputs, Port 3 pins that are externally being pulled low will source current (I_{IL}) because of the pull-ups.

Port 3 receives some control signals for Flash programming and verification.

Port 3 also serves the functions of various special features of the AT89S51, as shown in the following table.

٠,	Port Pin	Alternate Functions							
•	P3.0	RXD (serial input port)							
	P3.1	TXD (serial output port)							
	P3.2	INTO (external interrupt 0)							
	P3.3	P3.3 INT1 (external interrupt 1)							
	P3.4	T0 (timer 0 external input)							
	P3.5	P3.5 T1 (timer 1 external input)							
	P3.6	WR (external data memory write strobe)							
	P3.7	RD (external data memory read strobe)							
/PROG	 Reset input. A high on this pin for two machine cycles while the oscillator is running resets the device. This pin drives High for 98 oscillator periods after the Watchdog times out. The DIS-RTO bit in SFR AUXR (address 8EH) can be used to disable this feature. In the default state of bit DISRTO, the RESET HIGH out feature is enabled. Address Latch Enable (ALE) is an output pulse for latching the low byte of the address during accesses to external memory. This pin is also the program pulse input (PROG) during Flash programming. 								
	In normal operation, ALE is emitted at a constant rate of 1/6 the oscillator frequency and may be used for external timing or clocking purposes. Note, however, that one ALE pulse is skipped during each access to external data memory.								
	If desired, ALE operation can be disabled by setting bit 0 of SFR location 8EH. With the bit set ALE is active only during a MOVX or MOVC instruction. Otherwise, the pin is weakly puller high. Setting the ALE-disable bit has no effect if the microcontroller is in external execution mode.								
N	Program Store I	Enable (PSEN) is the read strobe to external program memory.							
	When the AT89S51 is executing code from external program memory, PSEN is activated twice each machine cycle, except that two PSEN activations are skipped during each access to external data memory.								
VPP	code from exter	s Enable. \overline{EA} must be strapped to GND in order to enable the device to fetch nal program memory locations starting at 0000H up to FFFFH. Note, however, is programmed, \overline{EA} will be internally latched on reset.							
	EA should be st	trapped to V _{CC} for internal program executions.							
	This pin also programming.	receives the 12-volt programming enable voltage (V_{PP}) during Flash							
L1	Input to the inve	erting oscillator amplifier and input to the internal clock operating circuit.							
L2	Output from the	inverting oscillator amplifier							

cial A map of the on-chip memory area called the Special Function Register (SFR) space is shown in Table 1. iction Note that not all of the addresses are occupied, and unoccupied addresses may not be impleisters mented on the chip. Read accesses to these addresses will in general return random data,

and write accesses will have an indeterminate effect.

								0FFH
B 100000								0F7H
								0EFI
CC 00000								0E71
								ODF
SW 00000								0D71
								0CF
							!	0C7
IP 00000								OBF
P3								087
IE 00000								0AF
₽2 11111		AUXR1 XXXXXXX0				WDTRST XXXXXXXX		0A7
CON 00000	SBUF XXXXXXXX							966
⊃1 11111								97H
CON 00000	TMOD 00000000	TL0 00000000	TL1 00000000	TH0 00000000	TH1 00000000	AUXR XXX00XX0		8FH
P0 11111	SP 00000111	DP0L 00000000	DP0H 00000000	DP1L 00000000	DP1H 00000000		PCON 0XXX0000	87H

1. AT89S51 SFR Map and Reset Values

AT89S51

User software should not write 1s to these unlisted locations, since they may be used in future products to invoke new features. In that case, the reset or inactive values of the new bits will always be 0.

Interrupt Registers: The individual interrupt enable bits are in the IE register. Two priorities can be set for each of the five interrupt sources in the IP register.

AUXR	A	ddress	= 8EH				Reset V	aiue = XXX00					
Not Bit Addressab	-												
		-	_	WDIDLE	DISRTO	_	-	DISALE					
Bit	7	6	5	4	3	2	1	0					
_	Rese	Reserved for future expansion											
DISALE	Disab	Disable/Enable ALE											
	DISA Opera	LE ating Mo	de										
	0 ALE is emitted at a constant rate of 1/6 the oscillator frequency												
	1	ALE	is acti	ve only durir	ng a MOVX o	r MOVC	instruction						
DISRTO	Disable/Enable Reset out												
	DISR	то											
	0	0 Reset pin is driven High after WDT times out											
	1 Reset pin is input only												
WDIDLE	Disab	ole/Enat	le WD	T in IDLE mo	de								
WDIDLE													
0	WD	T contir	ues to	count in IDL	Emode								
1	WD	T halts	countin	in IDLE m	ode								

Table 2. AUXR: Auxiliary Register

٩,4

Dual Data Pointer Registers: To facilitate accessing both internal and external data memory, two banks of 16-bit Data Pointer Registers are provided: DP0 at SFR address locations 82H-83H and DP1 at 84H-85H. Bit DPS = 0 in SFR AUXR1 selects DP0 and DPS = 1 selects DP1. The user should always initialize the DPS bit to the appropriate value before accessing the respective Data Pointer Register.

Power Off Flag: The Power Off Flag (POF) is located at bit 4 (PCON.4) in the PCON SFR. POF is set to "1" during power up. It can be set and rest under software control and is not affected by reset.

Table 3. AUXR1: Auxiliary Register 1

۱.

	AUXR1												
	Addre	ess = A2H	l					-					
		Reset Value = XXXXXX0E Not Bit Addressable											
		-	_	-	-	_	_	-	DPS				
	Bit	7	6	5	4	3	2	1	0				
	_	Reserve	ed for futu	ıre expan	sion								
	DPS	Data Po DPS	inter Reg	ister Sele	ct								
		0	Sele	cts DPTR	Registers	DPOL, DF	юн						
		1	Sele	cts DPTR	Registers	DP1L, DF	P1H			ł			
ganization gram Memory	On the AT	oin is con 89S51, directed	nected t if EA is to inter	o GND, a connecta nal mem	all progra	m fetches	s are dire m fetches	cted to exte s to addres	ernal memory. ses 0000H th through FFFF	rough			
a Memory	and indire	AT89S51 implements 128 bytes of on-chip RAM. The 128 bytes are accessible via direct indirect addressing modes. Stack operations are examples of indirect addressing, so the bytes of data RAM are available as stack space.											
itchdog ner ne-time abled with set-out)	software (WDTRST user must When the The WDT	upsets. [) SFR. t write 01 WDT is timeout	The WE The WD EH and enabled, period is	OT consi T is defa OE1H in it will inc depende	sts of a ulted to o sequence crement e ent on the	14-bit co disable fro ce to the ' every mac external	ounter an om exitin WDTRST chine cycl	d the Wate g reset. To register (S e while the quency. Th	may be subject chdog Timer I enable the W SFR location 0 oscillator is run ere is no way erflow reset).	Reset /DT, a)A6H). nning. to dis-			

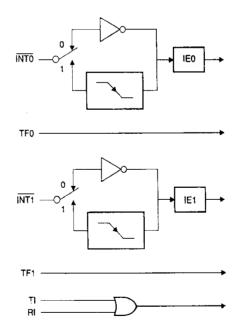
ing the WDT To enable the WDT, a user must write 01EH and 0E1H in sequence to the WDTRST register (SFR location 0A6H). When the WDT is enabled, the user needs to service it by writing 01EH and 0E1H to WDTRST to avoid a WDT overflow. The 14-bit counter overflows when it reaches 16383 (3FFFH), and this will reset the device. When the WDT is enabled, it will increment every machine cycle while the oscillator is running. This means the user must reset the WDT at least every 16383 machine cycles. To reset the WDT the user must write 01EH and 0E1H to WDTRST. WDTRST is a write-only register. The WDT counter cannot be read or written. When WDT overflows, it will generate an output RESET pulse at the RST pin. The RESET pulse duration is 98xTOSC, where TOSC=1/FOSC. To make the best use of the WDT, it

WDT overflows, it will drive an output RESET HIGH pulse at the RST pin.

* ,	should be serviced in those sections of code that will periodically be executed within the time required to prevent a WDT reset.
T During ver-down Idle	In Power-down mode the oscillator stops, which means the WDT also stops. While in Power- down mode, the user does not need to service the WDT. There are two methods of exiting Power-down mode: by a hardware reset or via a level-activated external interrupt, which is enabled prior to entering Power-down mode. When Power-down is exited with hardware reset, servicing the WDT should occur as it normally does whenever the AT89S51 is reset. Exiting Power-down with an interrupt is significantly different. The interrupt is held low long enough for the oscillator to stabilize. When the interrupt is brought high, the interrupt is serviced. To pre- vent the WDT from resetting the device while the interrupt pin is held low, the WDT is not started until the interrupt is pulled high. It is suggested that the WDT be reset during the inter- rupt service for the interrupt used to exit Power-down mode.
	To ensure that the WDT does not overflow within a few states of exiting Power-down, it is best to reset the WDT just before entering Power-down mode.
	Before going into the IDLE mode, the WDIDLE bit in SFR AUXR is used to determine whether the WDT continues to count if enabled. The WDT keeps counting during IDLE (WDIDLE bit = 0) as the default state. To prevent the WDT from resetting the AT89S51 while in IDLE mode, the user should always set up a timer that will periodically exit IDLE, service the WDT, and reenter IDLE mode.
	With WDIDLE bit enabled, the WDT will stop to count in IDLE mode and resumes the count upon exit from IDLE.
RT	The UART in the AT89S51 operates the same way as the UART in the AT89C51. For further information on the UART operation, refer to the ATMEL Web site (http://www.atmel.com). From the home page, select 'Products', then '8051-Architecture Flash Microcontroller', then 'Product Overview'.
ner 0 and 1	Timer 0 and Timer 1 in the AT89S51 operate the same way as Timer 0 and Timer 1 in the AT89C51. For further information on the timers' operation, refer to the ATMEL Web site (http://www.atmel.com). From the home page, select 'Products', then '8051-Architecture Flash Microcontroller', then 'Product Overview'.
errupts	The AT89S51 has a total of five interrupt vectors: two external interrupts (INTO and INT1), two timer interrupts (Timers 0 and 1), and the serial port interrupt. These interrupts are all shown in Figure 1.
	Each of these interrupt sources can be individually enabled or disabled by setting or clearing a bit in Special Function Register IE. IE also contains a global disable bit, EA, which disables all interrupts at once.
	Note that Table 4 shows that bit position IE.6 is unimplemented. In the AT89S51, bit position IE.5 is also unimplemented. User software should not write 1s to these bit positions, since they may be used in future AT89 products.
	The Timer 0 and Timer 1 flags, TF0 and TF1, are set at S5P2 of the cycle in which the timers overflow. The values are then polled by the circuitry in the next cycle

Table 4. Interrupt Enable (IE) Register

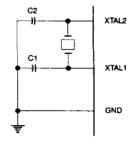
(


١.

(M	ISB)				(LS	SB)			
	EA	_	-	ES	ET1	EX1	ET0	EX0	
Е	nable Bit = 1	enables th	e interrupt.				-	•	

Enable Bit = 0 disables the interrupt.

Symbol	Position	Function
EA	IE.7	Disables all interrupts. If EA = 0, no interrupt is acknowledged. If EA = 1, each interrupt source is individually enabled or disabled by setting or clearing its enable bit.
_	IE.6	Reserved
-	IE.5	Reserved
ES	IE.4	Serial Port interrupt enable bit
ET1	IE.3	Timer 1 interrupt enable bit
EX1	IE.2	External interrupt 1 enable bit
ET0	IE.1	Timer 0 interrupt enable bit
EX0	1E.0	External interrupt 0 enable bit


Figure 1. Interrupt Sources

cillator aracteristics

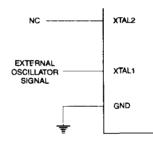

XTAL1 and XTAL2 are the input and output, respectively, of an inverting amplifier that can be configured for use as an on-chip oscillator, as shown in Figure 2. Either a quartz crystal or ceramic resonator may be used. To drive the device from an external clock source, XTAL2 should be left unconnected while XTAL1 is driven, as shown in Figure 3. There are no requirements on the duty cycle of the external clock signal, since the input to the internal clocking circuitry is through a divide-by-two flip-flop, but minimum and maximum voltage high and low time specifications must be observed.

Figure 2. Oscillator Connections

Note: C1, C2 = 30 pF \pm 10 pF for Crystals = 40 pF \pm 10 pF for Ceramic Resonators

Figure 3. External Clock Drive Configuration

In idle mode, the CPU puts itself to sleep while all the on-chip peripherals remain active. The mode is invoked by software. The content of the on-chip RAM and all the special function registers remain unchanged during this mode. The idle mode can be terminated by any enabled interrupt or by a hardware reset.
 Note that when idle mode is terminated by a hardware reset, the device normally resumes program execution from where it left off, up to two machine cycles before the internal reset algorithm takes control. On-chip hardware inhibits access to internal RAM in this event, but access to the port pins is not inhibited. To eliminate the possibility of an unexpected write to a port pin when idle mode is terminated by a reset, the instruction following the one that invokes idle mode should not write to a port pin or to external memory.

down is the last instruction executed. The on-chip RAM and Special Function Registers retain their values until the Power-down mode is terminated. Exit from Power-down mode can be initiated either by a hardware reset or by activation of an enabled external interrupt into INTO or INT1. Reset redefines the SFRs but does not change the on-chip RAM. The reset should not be activated before V_{CC} is restored to its normal operating level and must be held active long enough to allow the oscillator to restart and stabilize.

Mode	Program Memory	ALE	PSEN	PORT0	PORT1	PORT2	PORT3
ldle	Internal	1	1	Data	Data	Data	Data
Idle	External	1	1	Float	Data	Address	Data
Power-down	Internal	0	0	Data	Data	Data	Data
Power-down	External	0	0	Float	Data	Data	Data

Table 5. Status of External Pins During Idle and Power-down Modes

gram nory Lock

٩,

The AT89S51 has three lock bits that can be left unprogrammed (U) or can be programmed (P) to obtain the additional features listed in the following table.

Table 6. Lock Bit Protection Modes

	Program	Lock Bits		
	LB1	LB2	LB3	Protection Type
1	U	U	U	No program lock features
2	Р	U	U	MOVC instructions executed from external program memory are disabled from fetching code bytes from internal memory, EA is sampled and latched on reset, and further programming of the Flash memory is disabled
3	Р	Р	U	Same as mode 2, but verify is also disabled
4	Р	Р	Р	Same as mode 3, but external execution is also disabled

When lock bit 1 is programmed, the logic level at the \overline{EA} pin is sampled and latched during reset. If the device is powered up without a reset, the latch initializes to a random value and holds that value until reset is activated. The latched value of \overline{EA} must agree with the current logic level at that pin in order for the device to function property.

gramming Flash – allel Mode

The AT89S51 is shipped with the on-chip Flash memory array ready to be programmed. The programming interface needs a high-voltage (12-volt) program enable signal and is compatible with conventional third-party Flash or EPROM programmers.

The AT89S51 code memory array is programmed byte-by-byte.

Programming Algorithm: Before programming the AT89S51, the address, data, and control signals should be set up according to the Flash programming mode table and Figures 13 and 14. To program the AT89S51, take the following steps:

- 1. Input the desired memory location on the address lines.
- 2. Input the appropriate data byte on the data lines.
- 3. Activate the correct combination of control signals.
- 4. Raise \overline{EA}/V_{PP} to 12V.
- Pulse ALE/PROG once to program a byte in the Flash array or the lock bits. The bytewrite cycle is self-timed and typically takes no more than 50 µs. Repeat steps 1 through 5, changing the address and data for the entire array or until the end of the object file is reached.

Data Polling: The AT89S51 features Data Polling to indicate the end of a byte write cycle. During a write cycle, an attempted read of the last byte written will result in the complement of the written data on P0.7. Once the write cycle has been completed, true data is valid on all outputs, and the next cycle may begin. Data Polling may begin any time after a write cycle has been initiated.

Ready/Busy: The progress of byte programming can also be monitored by the RDY/BSY output signal. P3.0 is pulled low after ALE goes high during programming to indicate BUSY. P3.0 is pulled high again when programming is done to indicate READY.

Program Verify: If lock bits LB1 and LB2 have not been programmed, the programmed code data can be read back via the address and data lines for verification. The status of the individual lock bits can be verified directly by reading them back.

Reading the Signature Bytes: The signature bytes are read by the same procedure as a normal verification of locations 000H, 100H, and 200H, except that P3.6 and P3.7 must be pulled to a logic low. The values returned are as follows.

(000H) = 1EH indicates manufactured by Atmel (100H) = 51H indicates 89S51 (200H) = 06H

Chip Erase: In the parallel programming mode, a chip erase operation is initiated by using the proper combination of control signals and by pulsing ALE/PROG low for a duration of 200 ns -500 ns.

In the serial programming mode, a chip erase operation is initiated by issuing the Chip Erase instruction. In this mode, chip erase is self-timed and takes about 500 ms.

During chip erase, a serial read from any address location will return 00H at the data output.

gramming The Code memory array can be programmed using the serial ISP interface while RST is pulled to V_{cc} . The serial interface consists of pins SCK, MOSI (input) and MISO (output). After RST is set high, the Programming Enable instruction needs to be executed first before other operations can be executed. Before a reprogramming sequence can occur, a Chip Erase operation is required.

> The Chip Erase operation turns the content of every memory location in the Code array into FFH.

> Either an external system clock can be supplied at pin XTAL1 or a crystal needs to be connected across pins XTAL1 and XTAL2. The maximum serial clock (SCK) frequency should be less than 1/16 of the crystal frequency. With a 33 MHz oscillator clock, the maximum SCK frequency is 2 MHz.

To program and verify the AT89S51 in the serial programming mode, the following sequence is recommended: gramming

1. Power-up sequence:

Apply power between VCC and GND pins. Set RST pin to "H".

If a crystal is not connected across pins XTAL1 and XTAL2, apply a 3 MHz to 33 MHz clock to XTAL1 pin and wait for at least 10 milliseconds.

- Enable serial programming by sending the Programming Enable serial instruction to 2. pin MOSI/P1.5. The frequency of the shift clock supplied at pin SCK/P1.7 needs to be less than the CPU clock at XTAL1 divided by 16.
- 3. The Code array is programmed one byte at a time in either the Byte or Page mode. The write cycle is self-timed and typically takes less than 0.5 ms at 5V.
- Any memory location can be verified by using the Read instruction that returns the con-4. tent at the selected address at serial output MISO/P1.6.
- At the end of a programming session, RST can be set low to commence normal device 5. operation.

Flash ial Mode

۱.

al orithm

Power-off sequence (if needed):

Set XTAL1 to "L" (if a crystal is not used). Set RST to "L".

Turn V_{CC} power off.

Data Polling: The Data Polling feature is also available in the serial mode. In this mode, during a write cycle an attempted read of the last byte written will result in the complement of the MSB of the serial output byte on MISO.

The Instruction Set for Serial Programming follows a 4-byte protocol and is shown in Table 8 on page 18.

uction Set Jramming

ramming

đ

٦,

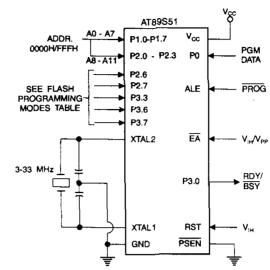
rface – illel Mode Every code byte in the Flash array can be programmed by using the appropriate combination of control signals. The write operation cycle is self-timed and once initiated, will automatically time itself to completion.

All major programming vendors offer worldwide support for the Atmel microcontroller series. Please contact your local programming vendor for the appropriate software revision.

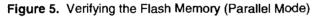
				ALE/	EA/						P0.7-0	P2.3-0	P1.7-0
	Vcc	RST	PSEN	PROG	V _{PP}	P2.6	P2.7	P3.3	P3.6	P3.7	Data	Address	
Code Data	5V	н	L	(2)	12V	L	н	н	н	н	D _{IN}	A11-8	A7-0
Code Data	5V	н	L	н	н	L	L	L	н	н	Dour	A11-8	A7-0
Lock Bit 1	5V	н	L	(3)	12V	н	н	н	н	н	x	X	х
Lock Bit 2	5V	н	L	(3)	12V	н	н	н	L	L	x	×	x
Lock Bit 3	5V	н	L	(3)	12V	н	L	н	н	L	x	X	x
Lock Bits	5V	н	L	н	H	н	н	L	н	L	P0.2. P0.3. P0.4	x	×
Erase	5V	н	L	(1)	12V	н	L	н	L	L	x	x	x
Atmel ID	5V	н	<u> </u>	н	н	L	L	L	L	L	1EH	0000	оон
Device ID	5V	н	; L	н	н	L	L	L	L	L	51H	0001	00H
Device ID	5V	н	L	н	н	L	L	L	L	L	0 5 H	0010	00Н

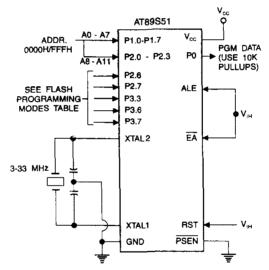
7. Flash Programming Modes

1. Each PROG pulse is 200 ns - 500 ns for Chip Erase.


2. Each PROG pulse is 200 ns - 500 ns for Write Code Data.

3. Each PROG pulse is 200 ns - 500 ns for Write Lock Bits.


4. RDY/BSY signal is output on P3.0 during programming.


5. X = don't care.

AT89S51

Figure 4. Programming the Flash Memory (Parallel Mode)

٩,•

BIODATA

Nama : Windi Hapsari NRP : 5103002026 TTL : Surabaya, 25 April 1984 Alamat : Jl. Klampis No. 44 Tlumpu Blitar

Riwayat Pendidikan:

- Tahun 1996 Lulus SDK Santa Maria Blitar
- Tahun 1999 Lulus SLTP Negeri VIII Blitar
- Tahun 2002 Lulus SMUK Diponegoro Blitar
- Tahun 2007 Lulus Sarjana Jurusan Teknik Elektro Fakultas Teknik Universitas Katolik Widya Mandala Surabaya

PERPUSTARAAN No istrice in Universitas Kato & W. NALA - 23 sυ