LAMPIRAN A

LISTING PROGRAM

Program Controller

```
#include <AT89x51.h>
#define y_in P2_0
#define x_in P2_1
#define atas P0_0
#define bawah P0_1
#define kiri P0_2
#define kanan P0_3
#define kirim P0_4
int temp,temp2,temp3,temp4;
void main ()
{
atas=0;
bawah=0;
kiri=0;
kanan=0;
while (1)
{
    kirim=1;
temp=0;
while (y_in==1)
        temp++;
}
temp2=0;
while (y_in==0)
{
    temp2++;
}
temp3=0;
while (x_in==1)
{
        temp3++;
}
temp4=0;
while(x_in==0)
{
        temp4++;
}
```

```
    if ((temp<=temp2+20)&&(temp>=temp2-20))
    {
        atas=1;
        bawah=1;
        kirim=0;
        kirim=1;
        }
        else if (temp<temp2-20)
        {
        atas=0;
        bawah=1;
        kirim=0;
        kirim=1;
        }
        else if (temp>temp2+20)
        {
        atas=1;
        bawah=0;
        kirim=0;
        kirim=1;
        }
        if ((temp3<==temp4+20)&&(temp3>=temp4-20))
        {
        kiri=1;
        kanan=1;
        kirim=0;
        kirim=1;
    }
    else if (temp3<temp4-20)
    {
        kiri=0;
        kanan=1;
        kirim=0;
        kirim=1;
    }
    else if (temp3>temp4+20)
    {
        kiri=1;
        kanan=0;
        kirim=0;
        kirim=1;
    }
    }
}
```


Program Device

```
#include <at89x51.h>
#define a P2_0
#define b P2_1
#define c P2_2
#define d P2_3
#define maju P0_0
#define mundur }\overline{P}0_
#define kiri P0_2
#define kanan P0_3
#define datalcd P3
#define rs Pl_1
#define e Pl_2
#define opto Pl_7
const char kata[] = "JARAK = ";
int sa,temp,buf,buf2,buf3,dat,i,buf4,buf5,test,koma;
long int count,count2,count3;
void tunda(int loop2)
{
    int loop;
    loop=0;
    while (loop<=loop2)
    {
    loop++;
    THl=(-5000/256)-1;
    TL1=(-5000%256);
    TFl=0;
    TRI=1;
    while (!TF1);
    }
}
void kirim_p(int dat1)
{
    rs=0;
    datalcd=dat1;
    e=1;
    e=0;
    tunda(3);
}
```

```
void initlcd()
{
        tunda(3);
        kirim_p(56);
        kirim_p(56);
        kirm_p(56);
        kirim_p(56);
        kirim_p(6);
        kirim_p(12);
        kirim_p(1);
}
void kirim_k(int dat2)
{
        rs=1;
        datalcd=dat2;
        e=l;
        e=0;
        tunda(3);
}
void cursorhome()
{
        rs=0;
        kirim_p(2);
}
void clear()
{
    rs=0;
        kirim_p(1);
}
void karakter(int bil)
{
        if (bil==0)
        dat=48;
        if (bil==l)
            dat=49;
        if (bil==2)
            dat=50;
        if (bil==3)
            dat=51;
        if (bil==4)
            dat=52;
```

```
    if (bil==5)
        dat=53;
    if (bil==6)
        dat=54;
    if (bil==7)
        dat=55;
    if (bil==8)
        dat=56;
    if (bil==9)
        dat=57;
}
main()
{
sa=0;
maju=0;
mundur=0;
temp=0
buf=0;
buf3=buf4=0;
count=count2=count 3=0;
initlcd();
buf2=0;
test=0;
while(sa=1)
{
    if ((c==1)&&(d==1)&&(buf==0))
    {
        maju=0;
        mundur=0;
        buf=1;
        buf4=0;
        test=1;
    }
    if ((c==0)&&(d==1))
    {
        maju=1;
        mundur=0;
            temp=1;
            buf4=1;
            test=0;
                }else
                if ((c==1)&&(d==0))
                {
                mundur=1;
                maju=1;
```

```
    temp=2;
    buf4=2;
    test=0;
        }
        if ((a==1)&&(b=1))
        {
        kiri=0;
        kanan=0;
        buf=0;
        }
        if ((a==0)&&(b==1)&&(temp==1)&&(buf==1))
        {
        kiri=1;
        maju=1;
        mundur=0;
        kanan=0,
        buf4=1;
        test=0;
        }else
        if ((a==0)&&(b=1)&&(temp=2)&&(buf==1))
        {
        kiri=1;
        kanan=0;
        mundur=1;
        maju=1;
        buf4=2;
        test=0;
}
    else
        if ((a==1)&&(b==0)&&(temp==1)&&(buf==1))
        {
        kiri=1;
        kanan=1;
        maju=1;
        mundur=0;
        buf4=1;
        test=0;
    }else
        if ((a==1)&&(b==0)&&(temp==2)&&(buf==1))
        {
            kiri=1;
            kanan=1;
            mundur=1;
            mаји=1;
    buf4=2;
```

```
    test=0;
    }else
    if ((a==1)&&(b==0)&&(temp=0))
    {
    kiri=1;
    kanan=1;
    }else
    if ((a==0)&&(b=-1)&&(temp==0))
    {
    kiri=1;
    kanan=0;
    }
    if (opto==1)
{
if (buf2==0)
    {
        buf2=1;
        if(buf4==1)
        {
        count++;
        count2=0
        count 3=count*11.817;
        }
        if (buf4==2)
        {
        count2++;
                count=0;
                count3=count2*11.817;
                }
            }
}
else
            buf2=0;
if (buf4!=0)
{
    kirim_p(128);
    for(i=0;i<8;i++)
    {
        kirim_k(kata[i]);
        }
    karakter(count3/10000);
    kirim_k(dat);
```

```
    karakter((count3/1000)-((count3/10000)*10));
    kirim_k(dat);
    karakter((count3/100)-((count3/1000)*10));
    kirim_k(dat);
    kirim_k(44);
    koma=count3;
    if (count3>99)
    karakter(koma/l0);
    kirim_k(dat);
    karakter(koma-((koma/10)*10));
    kirim_k(dat);
    kirim_k(20);
    kirim_k(77);
    }
else
{
        count=0;
        count2=0;
    }
}
}
```

LAMPIRAN B

GAMBAR ALAT

Gambar Controller

Gambar Device

LAMPIRAN C

GAMBAR RANGKAIAN LENGKAP CONTROLLER

Rangkaian Lengkap Controller

LAMPIRAN D

GAMBAR RANGKAIAN LENGKAP DEVICE

(A)

(B)
(A) Gambar Rangkaian Lengkap Penerima
(B) Gambar Driver Motor

LAMPIRAN E

Low-Cost $\pm 2 \mathrm{~g}$ Dual-Axis Accelerometer with Duty Cycle Output

FEATURES

2-Axis Acceleration Sensor on a Single IC Chip
$5 \mathrm{~mm} \times 5 \mathrm{~mm} \times 2 \mathrm{~mm}$ Utrasmall Chip Scale Package
2 mg Resolution at 60 Hz
Low-Power < 0.6 mA
Direct Interface to Low-Cost Microcontrollers via

Duty Cycle Output

BW Adjustment with a Single Capacitor
$3 \vee$ to 5.25 V Single Supply Operation
1000 g Shock Survival

APPLICATIONS

2-Axis Tilt Sensing with Faster Response than Electrolytic, Mercury, or Thermal Sensors
Computer Peripherals
Information Appliances
Alarms and Motion Detectors
Disk Drives
Vehicle Security

GENERAL DESCRIPTION

The ADXL202E is a low-cost, low-power, complete 2-axis accelerometer with a digital output, all on a single monolithic IC. It is an improved version of the ADXL202AQC/JQC. The ADXL202E will measure accelerations with a full-scale range of $\pm 2 \mathrm{~g}$. The ADXI 202 E can measure both dynamic acceleration (e.g., vibration) and static acceleration (e.g., gravity).
The outputs are analog voltage or digital signals whose duty cycles (ratio of pulsewidth to period) are proportional to acceleration. The duty cycle outputs can be directly measured by a microprocessor counter, without an A/D converter or glue logic. The duty cycle period is adjustable from 0.5 ms to 10 ms via a single resistor ($\mathrm{R}_{\text {SET }}$).
*Patents Pending
REV. A
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

FUNCTIONAL BLOCK DIAGRAM

The typical noise floor is $200 \mu \mathrm{~g} \sqrt{\mathrm{~Hz}}$, allowing signals below 2 mg (at 60 Hz bandwidth) to be resolved.
The bandwidth of the accelerometer is set with capacitors C_{X} and C_{Y} at the $\mathrm{X}_{\text {FILT }}$ and $\mathrm{Y}_{\text {FILT }}$ pins. An analog output can be reconstructed by filtering the duty cycle output.

The ADXL202E is available in $5 \mathrm{~mm} \times 5 \mathrm{~mm} \times 2 \mathrm{~mm} 8$-lead hermetic LCC package.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.

NOTES

${ }^{1}$ Typical Performance Characteristics.
${ }^{2}$ Guaranteed by measurement of initial offset and sensitivity.
${ }^{3}$ Airgnment error is specified as the angle between the true and indicated axis of seasitivity (see TPC 15).
${ }^{4}$ Cross-axis sensitivity is the algebraic sum of the alignment and the inherent sensitivity errors.
${ }^{5}$ Defined as the output change from ambient to maximum temperature or ambient to minimum temperature.
Specifications subject to change without notice.

ABSOLUTE MAXIMUM RATINGS*

Acceleration (Any Axis, Unpowered for 0.5 ms) 1000 g
Acceleration (Any Axis, Powered for 0.5 ms) 500 g

Output Short Circuit Duration, (Any Pin to Common)

*Stresses above those listed under Absolute Maximum Raingss may cause permanent damage to the device. This is a stress rating only, functional operation of the device at these or any other conditions above those indicate in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Drops onto hard surfaces can cause shocks of greater than 1000 g and exceed the absolute maximum rating of the device. Care should be exercised in handling to avoid damage.

Package Characteristics			
Package	$\theta_{J A}$	θ_{J}	Device
Weight	$120^{\circ} \mathrm{C} / \mathrm{W}$	tbd ${ }^{\circ} \mathrm{C} / \mathrm{W}$	<1.0 grams
8-Lead LCC			

PIN CONFIGURATION

BотTOM VIEW

PIN FUNCTION DESCREPTIONS

Pin		
No.	Mnemonic	Description
1	ST	Self-Test
2	T2	Connect $R_{\text {SET to Set T2 Period }}$
3	COM	Common
4	Y OUT	Y-Channel Duty Cycle Output
5	$\mathrm{X}_{\text {OUT }}$	X-Channel Duty Cycle Output
6	$\mathrm{Y}_{\text {FILT }}$	Y-Channel Filter Pin
7	$\mathrm{X}_{\text {FLIT }}$	X-Channel Filter Pin
8	$\mathrm{~V}_{\text {DD }}$	3V to 5.25 V

ORDERING GUIDE

Model	No. of Axes	Specified Voltage	Temperature Range	Package Description	Package Option
ADXL202JE	2	3 V to 5 V	0 to $70^{\circ} \mathrm{C}$	8-Lead LCC	E-8
ADXL202AE	2	3 V to 5 V	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8-Lead LCC	E-8

CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge withour detection. Although the ADXL202E features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high-energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

$$
V_{D D}=3 v
$$

TPC 1. X-Axis Zero g Bias Distribution at $X_{F I L}, V_{D D}=3 V$

TPC 2. γ-Axis Zero g Bias Distribution at $Y_{F I L}, V_{D D}=3 V$

TPC 3. X-Axis Sensitivity Distribution at $X_{F L T}, V_{D D}=3 V$

$$
V_{D D}=5 \mathrm{~V}
$$

TPC 4. X-Axis Zero g Bias Distribution at $X_{F L L}, V_{D D}=5 V$

TPC 5. Y-Axis Zero g Bias Distribution at $\gamma_{F L L}, V_{D D}=5 V$

TPC 6. X-Axis Sensitivity Distribution at $X_{\text {FIL }}, V_{V D}=5 \mathrm{~V}$

[^0]

TPC 7. Y-Axis Sensitivity Distribution at $Y_{F I L T}, V_{D D}=3 V$

TPC 8. X-Axis Sensitivity at $X_{O U T}, V_{D D}=3 V$

TPC 9. Y-Axis Sensitivity at $Y_{O U T}, V_{D D}=3 V$

TPC 11. X-Axis Sensitivity at $X_{O U T}, V_{D D}=5 \mathrm{~V}$

TPC 12. Y-Axis Sensitivity at $Y_{o u t}, V_{D O}=5 \mathrm{~V}$

TPC 13. Noise Density Distribution, $V_{D D}=3 V$

TPC 14. Typical Supply Current vs. Temperature

TPC 15. Rotational Die Alignment

TPC 16. Noise Density Distribution, $V_{D D}=5 \mathrm{~V}$

TPC 17. Cross-Axis Sensitivity Distribution

TPC 18. Typical Turn-On Time

TPC 19. X-Axis Zero g Drift Due to Temperature Distribution, $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

TPC 20. X-Axis Sensitivity Drift at $X_{\text {Filt }}$ Due to Temperature Distribution, $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

TPC 21. Typical X-Axis Zero g vs. Output for 16 Parts

TPC 22. Y-Axis Zero g Drift Due to Temperature Distribution, $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

TPC 23. Y-Axis Sensitivity Drift at $Y_{\text {fiit }}$ Due to Temperature Distribution, $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

TPC 24. Typical Y-Axis Zero g vs. Output for 16 Parts

TPC 25. Normalized DCM Period (T2) vs. Temperature

DEFINTITONS

T1 Length of the "on" portion of the cycle.
T2

Duty Cycle Ratio of the "on" time (T1) of the cycle to the total cycle (T2). Defined as T1/T2 for the ADXL202E/ ADXL210.
Pulsewidth Time period of the "on" pulse. Defined as T1 for the ADXL202E/ADXI210.

THEORY OF OPERATION

The ADXL202E is a complete, dual-axis acceleration measurement system on a single monolithic IC. It contains a polysilicon surfacemicromachined sensor and signal conditioning circuitry to implement an open loop acceleration measurement architecture. For each axis, an output circuit converts the analog signal to a duty cycle modulated (DCM) digital signal that can be decoded with a counter/timer port on a microprocessor. The ADXL202E is capable of measuring both positive and negative accelerations to at least $\pm 2 \mathrm{~g}$. The accelerometer can measure static acceleration forces such as gravity, allowing it to be used as a tilt sensor.
The sensor is a surface micromachined polysilicon structure built on top of the silicon wafer. Polysilicon springs suspend the structure over the surface of the wafer and provide a resistance against acceleration forces. Deflection of the structure is measured using a differential capacitor that consists of independent fixed plates and central plates attached to the moving mass. The fixed plates are driven by 180° out of phase square waves. An acceleration will deflect the beam and unbalance the differential capacitor, resulting in an output square wave whose amplitude is proportional to acceleration. Phase sensitive demodulation techniques are then used to rectify the signal and determine the direction of the acceleration.
The output of the demodulator drives a duty cycle modulator (DCM) stage through a $32 \mathrm{k} \Omega$ resistor. At this point a pin is available on each channel to allow the user to set the signal bandwidth of the device by adding a capacitor. This filtering improves measurement resolution and helps prevent aliasing.
After being low-pass filtered, the analog signal is converted to a duty cycle modulated signal by the DCM stage. A single resistor sets the period for a complete cycle (T2), which can be set berween 0.5 ms and 10 ms (see Figure 12). A 0 g acceleration produces a
nominally 50% duty cycle. The acceleration signal can be determined by measuring the length of the T 1 and T 2 pulses with a counter/timer or with a polling loop using a low cost microcontroller.
An analog output voltage can be obtained either by buffering the signal from the $\mathrm{X}_{\text {FILT }}$ and $\mathrm{Y}_{\text {FLLT }}$ pin, or by passing the duty cycle signal through an RC filter to reconstruct the dc value.
The ADXI 202E will operate with supply voltages as low as 3.0 V or as high as 5.25 V .

Figure 1. Typical Output Duty Cycle

APPLICATIONS

POWER SUPPLY DECOUPLING

For most applications a single $0.1 \mu \mathrm{~F}$ capacitor, C_{DC}, will adequately decouple the acceletometer from signal and noise on the power supply. However, in some cases, especially where digital devices such as microcontrollers share the same power supply, digital noise on the supply may cause interference on the ADXL202E output. This may be observed as a slowly undulating fluctuation of voltage at $\mathrm{X}_{\text {FILT }}$ and $\mathrm{Y}_{\text {FLLT }}$. If additional decoupling is needed, a 100Ω (or smaller) resistor or ferrite beads, may be inserted in the supply line of the ADXL202E

Figure 2.

DESIGN PROCEDURE FOR THE ADXI 202E

The design procedure for using the ADXI 202E with a duty cycle output involves selecting a duty cycle period and a filter capacitor. A proper design will take into account the application requirements for bandwidth, signal resolution and acquisition time, as discussed in the following sections.

Decoupling Capacitor $C_{D C}$

A $0.1 \mu \mathrm{~F}$ capacitor is recommended from V_{DD} to COM for power supply decoupling.

ST

The ST pin controls the self-test feature. When this pin is set to $V_{D D}$, an electrostatic force is exerted on the beam of the accelerometer. The resulting movement of the beam allows the user to test if the accelerometer is functional. The typical change in ouppur will be 10% at the duty cycle outputs (corresponding to 800 mg). This pin may be left open circuit or connected to common in normal use.

Duty Cycle Decoding

The ADXL202E's digital output is a duty cycle modulator. Acceleration is proportional to the ratio T1/T2. The nominal output of the ADXL202E is:

$$
0 g=50 \% \text { Duty Cycle }
$$

Scale factor is 12.5% Duty Cycle Change per g

These nominal values are affected by the initial tolerance of the device including zero g offset error and sensitivity error.
T2 does not have to be measured for every measurement cycle. It need only be updated to account for changes due to temperature, (a relatively slow process). Since the T2 time period is shared by both X and Y channels, it is necessary only to measure it on one channel of the ADXL202E. Decoding algorithms for various microcontrollers have been developed. Consult the appropriate Application Note.

Figure 3. Block Diagram:

Setting the Bandwidth Using C_{x} and C_{x}

The ADXI 202E has provisions for bandlimiting the $\mathrm{X}_{\mathrm{FLL}}$ and $Y_{\text {FIL }}$ pins. Capacitors must be added ar these pins to implement low-pass filtering for antialiasing and noise reduction. The equation for the 3 dB bandwidth is:

$$
F_{-3 d B}=\frac{1}{(2 \pi(32 k \Omega) \times C(x, y))}
$$

or, more simply, $F_{-3 d B}=\frac{5 \mu F}{C_{(X, Y)}}$
The tolerance of the internal resistor ($\mathrm{R}_{\text {fiLT }}$), can vary typically as much as $\pm 15 \%$ of its nominal value of $32 \mathrm{k} \Omega$; so the bandwidth will vary accordingly. A minimum capacitance of 1000 pF for $\mathrm{C}_{(\mathrm{X}, \mathrm{Y})}$ is required in all cases.

Table I. Filter Capacitor Selection, $\mathbf{C}_{\mathbf{X}}$ and $\mathrm{C}_{\mathbf{Y}}$

Bandwidth	Capacitor Value
10 Hz	$0.47 \mu \mathrm{~F}$
50 Hz	$0.10 \mu \mathrm{~F}$
100 Hz	$0.05 \mu \mathrm{~F}$
200 Hz	$0.027 \mu \mathrm{~F}$
500 Hz	$0.01 \mu \mathrm{~F}$
5 kHz	$0.001 \mu \mathrm{~F}$

Setting the DCM Period with $\mathbf{R}_{\text {SET }}$

The period of the DCM output is set for both channels by a single resistor from $R_{\text {SET }}$ to ground. The equation for the period is:

$$
T 2=\frac{R_{S E T}(\Omega)}{125 M \Omega}
$$

A $125 \mathrm{k} \Omega$ resistor will set the duty cycle repetition rate to approximately 1 kHz , or 1 ms . The device is designed to operate at dury cycle periods between 0.5 ms and 10 ms .

Table II. Resistor Values to Set T2

$\mathbf{T} 2$	$\mathbf{R}_{\mathbf{S E T}}$
1 ms	$125 \mathrm{k} \Omega$
2 ms	$250 \mathrm{k} \Omega$
5 ms	$625 \mathrm{k} \Omega$
10 ms	$1.25 \mathrm{M} \Omega$

Note that the R RET should always be included, even if only an analog output is desired. Use an $R_{\text {SET }}$ value between $500 \mathrm{k} \Omega$ and $2 \mathrm{M} \Omega$ when taking the output from $\mathrm{X}_{\text {FILT }}$ or $\mathrm{Y}_{\text {FILT }}$. The $\mathrm{R}_{\text {SET }}$ resistor should be place close to the T2 Pin to minimize parasitic capacitance at this node.

Selecting the Right Accelerometer

For most tilt sensing applications the ADXI 202E is the most appropriate accelerometer. Its higher sensitivity ($12.5 \% / g$) allows the user to use a lower speed counter for PWMi decoding while maintaining high resolution. The ADXL210 should be used in applications where accelerations of greater than $\pm 2 g$ are expected.

MICROCOMPUTER INTERFACES

The ADXL202E is specifically designed to work with low-cost microcontrollers. Specific code sets, reference designs, and application notes are available from the factory. This section will outline a general design procedure and discuss the various trade-offs that need to be considered.

The designer should have some idea of the required performance of the system in terms of:

Resolution: the smallest signal change that needs to be detected.
Bandwidth: the highest frequency that needs to be detected.
Acquisition Time: the time that will be available to acquire the signal on each axis.

These requirements will help to determine the accelerometer bandwidth, the speed of the microcontroller clock and the length of the T2 period.
When selecting a microcontroller it is helpful to have a counter timer port available. The microcontroller should have provisions for software calibration. While the ADXL202E is a highly accurate accelerometer, it has a wide tolerance for initial offset. The easiest way to null this offset is with a calibration factor saved on the microcontroller or by a user calibration for zero g. In the case where the offset is calibrated during manufacture, there are several options, including external EEPROM and microcontrollers with "one-time programmable" features.

DESIGN TRADE-OFFS FOR SELECTING FILTER CHARACTERISTICS: THE NOISE/BW TRADE-OFF

The accelerometer bandwidth selected will determine the measurement resolution (smallest detectable acceleration). Filtering can be used to lower the noise floor and improve the resolution of the accelerometer. Resolution is dependent on both the analog filter bandwidth at $\mathrm{X}_{\mathrm{FLIT}}$ and $\mathrm{Y}_{\mathrm{FLL}}$ and on the speed of the microcontroller counter.

The analog output of the ADXL202E has a typical bandwidth of 5 kHz , while the duty cycle modulators' bandwidth is 500 Hz . The user must filter the signal at this point to limit aliasing errors. To minimize DCM errors the analog bandwidth should be less than $1 / 10$ the DCM frequency. Analog bandwidth may be increased to up to $1 / 2$ the DCM frequency in many applications. This will result in greater dynamic error generated at the DCM.
The analog bandwidth may be further decreased to reduce noise and improve resolution. The ADXL202E noise has the characteristics of white Gaussian noise that contributes equally at all frequencies and is described in terms of $\mu \mathrm{g}$ per root Hz ; i.e., the noise is proportional to the square root of the bandwidth of the accelerometer. It is recommended that the user limit bandwidth to the lowest frequency needed by the application, to maximize the resolution and dynamic range of the accelerometer.

With the single pole roll-off characteristic, the typical noise of the ADXL202E is determined by the following equation:

$$
\text { Noise }(r m s)=(200 \mu g / \sqrt{H z}) \times(\sqrt{B W \times 1.6})
$$

At 100 Hz the noise will be:

$$
\operatorname{Noise}(m s)=(200 \mu g / \sqrt{H z}) \times(\sqrt{100 \times(1.6)})=2.53 m g
$$

Often the peak value of the noise is desired. Peak-to-peak noise can only be estimated by statistical methods. Table III is useful for estimating the probabilities of exceeding various peak values, given the rms value.

Table III. Estimation of Peak-to-Peak Noise

Nominal Peak-to-Peak Value	\% of Time that Noise Will Exceed Nominal Peak-to-Peak Value
$2.0 \times \mathrm{rms}$	32%
$4.0 \times \mathrm{rms}$	
$6.0 \times \mathrm{rms}$	4.6%
$8.0 \times \mathrm{mms}$	0.27%

The peak-to-peak noise value will give the best estimate of the uncertainty in a single measurement.
Table IV gives typical noise output of the ADXL202E for various C_{X} and C_{Y} values.

Table IV. Fiter Capacitor Selection, \mathbf{C}_{X} and $\mathrm{C}_{\mathbf{Y}}$

			Peak-to-Peak Noise Estimate 95\% Probability (rms \times 4)
Bandwidth	$\mathbf{C}_{\mathbf{X}}, \mathbf{C}_{\mathbf{Y}}$	rms Noise	
10 Hz	$0.47 \mu \mathrm{~F}$	0.8 mg	3.2 mg
50 Hz	$0.10 \mu \mathrm{~F}$	1.8 mg	7.2 mg
100 Hz	$0.05 \mu \mathrm{~F}$	2.5 mg	10.1 mg
200 Hz	$0.027 \mu \mathrm{~F}$	3.6 mg	14.3 mg
500 Hz	$0.01 \mu \mathrm{~F}$	5.7 mg	22.6 mg

CHOOSING T2 AND COUNTER FREQUENCY: DESIGN TRADE-OFFS

The noise level is one determinant of accelerometer resolution. The second relates to the measurement resolution of the counter when decoding the duty cycle output.
The ADXL202E's duty cycle converter has a resolution of approximately 14 bits; better resolution than the accelerometer itself. The actual resolution of the acceleration signal is, however, limited by the time resolution of the counting devices used to decode the duty cycle. The faster the counter clock, the higher the resolution of the duty cycle and the shorter the T2 period can be for a given resolution. The following table shows some of the trade-offs. It is important to note that this is the resolution due to the microprocessors' counter. It is probable that the accelerometer's noise floor may set the lower limit on the resolution, as discussed in the previous section.

Table V. Trade-Offs Between Microcontroller Counter Rate, T2 Period, and Resolution of Duty Cycle Modulator

T2 (ms)	$\begin{aligned} & \mathbf{R}_{\mathbf{S E T}} \\ & (\mathbf{k} \Omega) \end{aligned}$	ADXL 202E Sample Rate	Counter Clock Rate (MHz)	Counts per 12 Cycle	Counts per g	Resolution (mg)
1.0	124	1000	2.0	2000	250	4.0
1.0	124	1000	1.0	1000	125	8.0
1.0	124	1000	0.5	500	62.5	16.0
5.0	625	200	2.0	10000	1250	0.8
5.0	625	200	1.0	5000	625	1.6
5.0	625	200	0.5	2500	312.5	3.2
10.0	1250	100	2.0	20000	2500	0.4
10.0	1250	100	1.0	10000	1250	0.8
10.0	1250	100	0.5	5000	625	1.6

STRATEGIES FOR USING THE DUTY CYCLE OUTPUT WITH MICROCONTROLLERS

Application notes outlining various strategies for using the duty cycle output with low cost microcontrollers are available from the factory.

USING THE ADXL202E AS A DUAL-AXIS TILT SENSOR

One of the most popular applications of the ADXL202E is tilt measurement. An accelerometer uses the force of gravity as an input vector to determine orientation of an object in space.
An accelerometer is most sensitive to tilt when its sensitive axis is perpendicular to the force of gravity, i.e., paralle] to the earth's surface. At this orientation its sensitivity to changes in tilt is highest. When the accelerometer is oriented on axis to gravity, i.e., near its $+1 g$ or $-1 g$ reading, the change in output acceleration per degree of tilt is negligible. When the accelerometer is perpendicular to gravity, its output will change nearly 17.5 mg per degree of tilt, but at 45° degrees it is changing only at 12.2 mg per degree and resolution declines. The following table illustrates the changes in the X and Y axes as the device is tilted $\pm 90^{\circ}$ through gravity.

Figure 4. How the X and Y Axes Respond to Changes in Tilt

A DUAL AXIS TILT SENSOR: CONVERTING ACCELERATION TO TILT

When the accelerometer is oriented so both its X and Y axes are parallel to the earth's surface it can be used as a two axis tilt sensor with a roll and a pitch axis. Once the output signal from the accelerometer has been converted to an acceleration that varies between -1 g and +1 g , the output tilt in degrees is calculated as follows:

$$
\begin{aligned}
& \text { Pitch }=\operatorname{ASIN}(A x / 1 \mathrm{~g}) \\
& \operatorname{Roll}=A S I N(A y / 1 \mathrm{~g})
\end{aligned}
$$

Be sure to account for overranges. It is possible for the accelerometers to output a signal greater than $\pm 1 g$ due to vibration, shock or other accelerations.

MEASURING 360° OF TILT

It is possible to measure a full 360° of orientation through gravity by using two accelerometers oriented perpendicular to one another (see Figure 5). When one sensor is reading a maximum change in output per degree, the other is at its minimum.

Figure 5. Using a Two-Axis Accelerometer to Measure 360° of Tilt

USING THE ANALOG OUTPUT

The ADXL202E was specifically designed for use with its digital outputs, but has provisions to provide analog outputs as well.

Duty Cycle Filtering

An analog output can be reconstructed by filtering the duty cycle output. This technique requires only passive components. The duty cycle period (T2) should be set to $<1 \mathrm{~ms}$. An RC filter with a 3 dB point at least a factor of >10 less than the duty cycle frequency is connected to the duty cycle output. The filter resistor should be no less than $100 \mathrm{k} \Omega$ to prevent loading of the output stage. The analog output signal will be ratiometric to the supply voltage. The advantage of this method is an output scale factor of approximately double the analog output. Its disadvantage is that the frequency response will be lower than when using the $\mathrm{X}_{\text {FLLT }}$, $\mathrm{Y}_{\mathrm{FLIT}}$ output.

$\mathbf{X}_{\text {FLLT }}, \mathbf{Y}_{\text {FLLT }}$ Output

The second method is to use the analog output present at the $\mathrm{X}_{\text {Filt }}$ and $\mathrm{Y}_{\text {Filt }}$ pin. Unfortunately, these pins have a $32 \mathrm{k} \Omega$ output impedance and are not designed to drive a load directly. An op amp follower may be required to buffer this pin. The advantage of this method is that the full 5 kHz bandwidth of the accelerometer is available to the user A capacitor still must be added at this point for filtering. The duty cycle converter should be kept running by using $\mathrm{R}_{\text {SET }}<10 \mathrm{MS} 2$. Note that the accelerometer offset and sensitivity are ratiometric to the supply voltage. The offset and sensitivity are nominally:
0 g Offset $=\mathrm{V}_{\mathrm{DD}} / 2$
ADXI202E Sensitivity $=\left(60 \mathrm{mV} \times \mathrm{V}_{\mathrm{s}}\right) / \mathrm{g}$

ADXL202E

USING THE ADXI.202E IN VERY LOW POWER APPLICATIONS

An application note outlining low power strategies for the ADXL202E is available. Some key points are presented here. It is possible to reduce the ADXL202E's average current from 0.6 mA to less than $20 \mu \mathrm{~A}$ by using the following techniques:

1. Power Cycle the accelerometer.
2. Run the accelerometer at a Lower Voltage, (Down to 3 V).

Power Cycling with an External A/D

Depending on the value of the $\mathrm{X}_{\text {FLIT }}$ capacitor, the ADXI 202E is capable of turning on and giving a good reading in 1.6 ms . Most microcontroller based A/Ds can acquire a reading in another $25 \mu \mathrm{~s}$. Thus it is possible to turn on the ADXL202E and take a reading in $<2 \mathrm{~ms}$. If we assume that a 20 Hz sample rate is sufficient, the total current required to take 20 samples is $2 \mathrm{~ms} \times 20$ samples/s $\times 0.6 \mathrm{~mA}=24 \mu \mathrm{~A}$ average current. Running the part at 3 V will reduce the supply current from 0.6 mA to 0.4 mA , bringing the average current down to $16 \mu \mathrm{~A}$.
The A/D should read the analog output of the ADXL202E at the $\mathrm{X}_{\text {FLTT }}$ and $\mathrm{Y}_{\text {FLT. }}$ pins. A buffer amplifier is recommended, and may be required in any case to amplify the analog output to give enough resolution with an 8 -bit to 10 -bit converter.

Power Cycling When Using the Digital Output

An alternative is to run the microcontroller at a higher clock rate and put it into shutdown between readings, allowing the use of the digital output. In this approach the ADXL202E should be set at its fastest sample rate ($\mathrm{T} 2=0.5 \mathrm{~ms}$), with a 500 Hz filter at $\mathrm{X}_{\text {filt }}$ and $\mathrm{Y}_{\text {FLIT }}$. The concept is to acquire a reading as quickly as possible and then shut down the ADXI 202E and the microcontroller until the next sample is needed.
In either of the above approaches, the ADXL202E can be turned on and off directly using a digital port pin on the microcontroller to power the accelerometer without additional components.

CALIBRATING THE ADXL 202E/ADXI 210

The initial value of the offset and scale factor for the ADXL202E will require calibration for applications such as tilt measurement. The ADXL202E architecture has been designed so that these calibrations take place in the software of the microcontroller used to decode the duty cycle signal. Calibration factors can be stored in EEPROM or determined at turn-on and saved in dynamic memory.
For low g applications, the force of gravity is the most stable, accurate and convenient acceleration reference available. A reading of the 0 g point can be determined by orientating the device parallel to the earth's surface and then reading the output.
A more accurate calibration method is to make measurements at $+1 g$ and $-1 g$. The sensitivity can be determined by the two measurements.

To calibrate, the accelerometer's measurement axis is pointed directly at the earth. The $1 g$ reading is saved and the sensor is turned 180° to measure -1 g . Using the two readings, the sensitivity is:

> Let $A=$ Accelerometer output with axis oriented to $+1 g$
> Let $B=$ Accelerometer output with axis oriented to -1 g then: Sensitivity $=[A-B] / 2 g$

For example, if the $+1 g$ reading (A) is 55% duty cycle and the $-1 g$ reading (B) is 32% duty cycle, then:

$$
\text { Sensitivity }=[55 \%-32 \%] / 2 g=11.5 \% / g
$$

These equations apply whether the output is analog or duty cycle. Application notes outlining algorithms for calculating acceleration from duty cycle and automated calibration routines are available from the factory.

OUTLINE DIMENSIONS
 Dimensions shown in inches and (mm).

8-Terminal Ceramic Leadless Chip Carrier
(E-8)

Features

- Compatible with MCS ${ }^{\circledR}$ - 51 Products
- 4K Bytes of in-System Programmable (ISP) Flash Memory
- Endurance: 1000 Write/Erase Cycies
- 4.0 V to 5.5 V Operating Range
- Fully Static Operation: 0 Hz to 33 MHz
- Three-level Program Memory Lock
- 128×8-bit Internal RAM
- 32 Programmabie I/O Lines
- Two 16-bit Timer/Counters
- Six Interrupt Sources
- Full Duplex UART Serial Channel
- Low-power Idie and Power-down Modes
- Interrupt Recovery from Power-down Mode
- Watchdog Timer
- Dual Data Pointer
- Power-off Flag
- Fast Programming Time
- Flexible ISP Programming (Byte and Page Mode)

Description

The AT89S51 is a low-power, high-performance CMOS 8-bit microcontroller with 4 K bytes of in-System Programmable Flash memory. The device is manufactured using Atmel's high-density nonvolatile memory technology and is compatible with the indus-try-standard 80C51 instruction set and pinout. The on-chip Flash allows the program memory to be reprogrammed in-system or by a conventional nonvolatile memory programmer. By combining a versatile 8-bit CPU with in-System Programmable Flash on a monolithic chip, the Atmel AT89S51 is a powerful microcontroller which provides a highly-flexible and cost-effective solution to many embedded control applications.
The AT89S51 provides the following standard features: 4K bytes of Flash, 128 bytes of RAM, 32 I/O lines, Watchdog timer, two data pointers, two 16-bit timer/counters, a fivevector two-levet interrupt architecture, a full duplex serial port, on-chip oscillator, and clock circuitry. In addition, the AT89S51 is designed with static logic for operation down to zero frequency and supports two software selectable power saving modes. The Idle Mode stops the CPU while allowing the RAM, timer/counters, seriai port, and interrupt system to continue functioning. The Power-down mode saves the RAM contents but freezes the oscillator, disabling all other chip functions until the next external interrupt or hardware reset.

8-bit
Microcontroller with 4K Bytes In-System Programmable Flash

AT89S51

Pin Configurations

PLCC

PDIP

Block Diagram

Pin Description

Supply voltage (afl packages except 42-PDIP).

Port 2 is an 8 -bit bi-directional 1/O port with internal pull-ups. The Port 2 output buffers can sink/source four TTL inputs. When 1s are written to Port 2 pins, they are pulled high by the internal pull-ups and can be used as inputs. As inputs, Port 2 pins that are externally being pulled low will source current ($l_{1 L}$) because of the internal pull-ups.
Port 2 emits the high-order address byte during fetches from extemal program memory and during accesses to external data memory that use 16-bit addresses (MOVX @ DPTR). In this application, Port 2 uses strong internal pull-ups when emitting 1s. During accesses to external data memory that use 8-bit addresses (MOVX @ RI), Port 2 emits the contents of the P2 Special Function Register.

Port 2 also receives the high-order address bits and some control signals during Flash programming and verification.

Port 3
Port 3 is an 8 -bit bi-directional I/O port with internal pull-ups. The Port 3 output buffers can sink/source four TTL inputs. When 1s are written to Port 3 pins, they are pulled high by the internal pull-ups and can be used as inputs. As inputs, Port 3 pins that are externally being pulled low will source current $\left(I_{1 L}\right)$ because of the pull-ups.
Port 3 receives some control signals for Flash programming and verification.
Port 3 also serves the functions of various special features of the AT89S51, as shown in the following table.

Port Pin	Alternate Functions
P3.0	RXD (serial input port)
P3.1	TXD (serial output port)
P3.2	$\overline{N T O}$ (external interrupt 0)
P3.3	$\overline{N T 1}$ (external interrupt 1)
P3.4	TO (timer 0 external input)
P3.5	T1 (timer 1 externat input)
P3.6	$\overline{W R}$ (external data memory write strobe)
P3.7	$\overline{R D}$ (external data memory read strobe)

RST Reset input. A high on this pin for two machine cycles while the oscillator is running resets the device. This pin drives High for 98 oscillator periods after the Watchdog times out. The DISRTO bit in SFR AUXR (address 8EH) can be used to disable this feature. In the default state of bit DISRTO, the RESET HIGH out feature is enabled.

Address Latch Enable (ALE) is an output pulse for latching the low byte of the address during accesses to external memory. This pin is also the program pulse input ($\overline{\mathrm{PROG}}$) during Flash programming.
In normal operation, ALE is emitted at a constant rate of $1 / 6$ the oscillator frequency and may be used for external timing or clocking purposes. Note, however, that one ALE pulse is skipped during each access to external data memory.
If desired, ALE operation can be disabled by setting bit 0 of SFR location $8 E H$. With the bit set, ALE is active only during a MOVX or MOVC instruction. Otherwise, the pin is weakly pulled high. Setting the ALE-disable bit has no effect if the microcontroller is in external execution mode.

Program Store Enable ($\overline{\mathrm{PSEN}}$) is the read strobe to external program memory.
When the AT89S51 is executing code from external program memory, $\overline{\operatorname{PSEN}}$ is activated twice each machine cycle, except that two PSEN activations are skipped during each access to external data memory.

Exterral Access Enable. $\overline{E A}$ must be strapped to GND in order to enable the device to fetch code from external program memory locations starting at 0000 H up to FFFFH. Note, however, that if lock bit 1 is programmed, $\overline{E A}$ will be internally latched on reset.
$\overline{E A}$ should be strapped to $V_{c c}$ for internal program executions.
This pin also receives the 12 -volt programming enable voltage ($V_{P P}$) during Flash programming.

Special Function
Registers

A map of the on-chip memory area called the Special Function Register (SFR) space is shown in Table 1.

Note that not all of the addresses are occupied, and unoccupied addresses may not be implemented on the chip. Read accesses to these addresses will in general return random data, and write accesses will have an indeterminate effect.

Table 1. AT89S51 SFR Map and Reset Values

0F8H									OFFH
OFOH	$\begin{gathered} B \\ 00000000 \end{gathered}$								0F7H
0E8H									OEFH
OEOH	$\begin{gathered} A C C \\ 00000000 \end{gathered}$								OE7H
008H									ODFH
ODOH	$\begin{gathered} \text { PSW } \\ 00000000 \end{gathered}$								0D7H
0 CBH									OCFH
OCOH									0C7H
0 BEH	$\begin{gathered} \text { IP } \\ \times \times 000000 \end{gathered}$								OBFH
OBOH	$\begin{gathered} \mathrm{P} 3 \\ 11111111 \end{gathered}$								087H
OABH	$\begin{gathered} \text { 他 } \\ 0 \times 000000 \end{gathered}$								OAFH
OAOH	$\begin{gathered} P 2 \\ 11111111 \end{gathered}$		$\begin{gathered} \text { AUXR1 } \\ X X X X X X X 0 \end{gathered}$				WDTRST $x x x x x x x$		0A7H
98 H	$\begin{gathered} \text { SCON } \\ 00000000 \end{gathered}$	$\begin{gathered} \text { SBUF } \\ X X X X X X X \end{gathered}$							9FH
90 H	$\begin{gathered} \text { P1 } \\ 11111111 \end{gathered}$								97H
88H	$\begin{gathered} \text { TCON } \\ 00000000 \end{gathered}$	$\begin{aligned} & \text { TMOD } \\ & 00000000 \end{aligned}$	$\begin{gathered} \text { TLO } \\ 00000000 \end{gathered}$	$\begin{gathered} \text { TL1 } \\ 00000000 \end{gathered}$	$\begin{gathered} \text { THO } \\ 00000000 \end{gathered}$	$\begin{gathered} \text { TH1 } \\ 00000000 \end{gathered}$	$\begin{gathered} \text { AUXR } \\ \times \times \times 00 \times \times 0 \end{gathered}$		8FH
80 H	$\begin{gathered} \text { PO } \\ 11111111 \end{gathered}$	$\begin{gathered} \text { SP } \\ 00000111 \end{gathered}$	$\begin{gathered} \text { DPOL } \\ 00000000 \end{gathered}$	$\begin{gathered} \text { DPOH } \\ 00000000 \end{gathered}$	$\begin{gathered} \text { DP1L } \\ 00000000 \end{gathered}$	$\begin{gathered} \text { DP1H } \\ 00000000 \end{gathered}$		$\begin{gathered} \text { PCON } \\ 0 \times \times \times 0000 \end{gathered}$	87H

User software should not write is to these unlisted locations, since they may be used in future products to invoke new features. In that case, the reset or inactive values of the new bits will always be 0 .
Interrupt Registers: The individual interrupt enable bits are in the IE register. Two priorities can be set for each of the five interrupt sources in the IP register.

Table 2. AUXR: Auxiliary Register

Dual Data Pointer Registers: To facilitate accessing both internal and external data memory, two banks of 16 -bit Data Pointer Registers are provided: DPO at SFR address locations 82 H 83 H and DP1 at $84 \mathrm{H}-85 \mathrm{H}$. Bit DPS $=0$ in SFR AUXR1 selects DP0 and DPS $=1$ selects DP1. The user should ALWAYS initialize the DPS bit to the appropriate value before accessing the respective Data Pointer Register.

Power Off Flag: The Power Off Flag (POF) is located at bit 4 (PCON.4) in the PCON SFR. POF is set to " 1 " during power up. It can be set and rest under software control and is not affected by reset.

Table 3. AUXR1: Auxiliary Register 1

Memory Organization

Program Memory

Data Memory

Watchdog Timer (One-time Enabled with Reset-out)

MCS-51 devices have a separate address space for Program and Data Memory. Up to 64 K bytes each of external Program and Data Memory can be addressed.

If the $\overline{E A}$ pin is connected to GND, all program fetches are directed to external memory.
On the AT89551, if $\overline{E A}$ is connected to $V_{C C}$, program fetches to addresses 0000 H through FFFH are directed to internal memory and fetches to addresses 1000 H through FFFFH are directed to external memory.

The AT89S51 implements 128 bytes of on-chip RAM. The 128 bytes are accessible via direct and indirect addressing modes. Stack operations are examples of indirect addressing, so the 128 bytes of data RAM are available as stack space.

The WDT is intended as a recovery method in situations where the CPU may be subjected to software upsets. The WDT consists of a 14-bit counter and the Watchdog Timer Reset (WDTRST) SFR. The WDT is defaulted to disable from exiting reset. To enable the WDT, a user must write 01EH and 0E1H in sequence to the WDTRST register (SFR location 0A6H). When the WDT is enabled, it will increment every machine cycle while the oscillator is running. The WDT timeout period is dependent on the external clock frequency. There is no way to disable the WDT except through reset (either hardware reset or WDT overflow reset). When WDT overflows, it will drive an output RESET HIGH pulse at the RST pin.

To enable the WDT, a user must write 01EH and 0E1H in sequence to the WDTRST register (SFR location OA6H). When the WDT is enabled, the user needs to service it by writing 01EH and OE1H to WDTRST to avoid a WDT overflow. The 14-bit counter overflows when it reaches 16383 (3FFFH), and this will reset the device. When the WDT is enabled, it will increment every machine cycle while the oscillator is running. This means the user must reset the WDT at least every 16383 machine cycles. To reset the WDT the user must write 01EH and 0E1H to WDDTRST. WDTRST is a write-only register. The WDT counter cannot be read or written. When WDT overflows, it will generate an output RESET pulse at the RST pin. The RESET pulse duration is $98 \times$ TOSC, where TOSC $=1 /$ FOSC. To make the best use of the WDT, it should be serviced in those sections of code that will periodically be executed within the time required to prevent a WDT reset.

WDT During
 Power-down and Idle

In Power-down mode the oscillator stops, which means the WDT also stops. While in Powerdown mode, the user does not need to service the WDT. There are two methods of exiting Power-down mode: by a hardware reset or via a level-activated external interrupt, which is enabled prior to entering Power-down mode. When Power-down is exited with hardware reset, servicing the WDT should occur as it normally does whenever the AT89S51 is reset. Exiting Power-down with an interrupt is significantly different. The interrupt is held low long enough for the oscillator to stabilize. When the interrupt is brought high, the interrupt is serviced. To prevent the WDT from resetting the device while the interrupt pin is held low, the WDT is not started until the interrupt is pulled high. It is suggested that the WDT be reset during the interrupt service for the interrupt used to exit Power-down mode.

To ensure that the WDT does not overflow within a few states of exiting Power-down, it is best to reset the WDT just before entering Power-down mode.
Before going into the IDLE mode, the WDIDLE bit in SFR AUXR is used to determine whether the WDT continues to count if enabled. The WDT keeps counting during IDLE (WDIDLE bit = 0) as the default state. To prevent the WDT from resetting the AT89S51 while in IDLE mode, the user should always set up a timer that will periodically exit IDLE. service the WDT, and reenter IDLE mode.

With WDIDLE bit enabled, the WDT will stop to count in IDLE mode and resumes the count upon exit from IDLE.

The UART in the AT89S51 operates the same way as the UART in the AT89C51. For further information on the UART operation, refer to the Atmel Web site (http://www.atmel.com). From the home page, select "Products", then "Microcontrollers", then "8051-Architecture", then "Documentation", and "Other Documents". Open the Adobe ${ }^{\star}$ Acrobat ${ }^{\star}$ file "AT89 Series Hardware Description".

Timer 0 and Timer 1 in the AT89S51 operate the same way as Timer 0 and Timer t in the AT89C51. For further information on the timers' operation, refer to the Atmel Web site (http://www.atmel.com). From the home page, select "Products", then "Microcontrollers", then "8051-Aichitecture", then "Documentation", and "Other Documents". Open the Adobe Acrobat file "AT89 Series Hardware Description".

The AT89S51 has a total of five interrupt vectors: two external interrupts (NTT and INT1), two timer interrupts (Timers 0 and 1), and the serial port interrupt. These interrupts are all shown in Figure 1.
Each of these interrupt sources can be individually enabled or disabled by setting or clearing a bit in Special Function Register IE. IE also contains a global disable bit, EA, which disables all interrupts at once.

Note that Table 4 shows that bit positions IE. 6 and IE. 5 are unimplemented. User software should not write is to these bit positions, since they may be used in future AT89 products.
The Timer 0 and Timer 1 flags, TF0 and TF1, are set at S5P2 of the cycle in which the timers overflow. The values are then polled by the circuitry in the next cycle.

Table 4. Interrupt Enable (IE) Register

Symbol	Position	Function
EA	IE. 7	Disables all interrupts. If EA $=0$, no interrupt is acknowledged. If EA $=1$, each interrupt source is individually enabled or disabled by setting or clearing its enable bit.
-	Reserved	
-	Reserved	
ES	IE. 5	Serial Port interrupt enable bit
ET1	IE. 3	Timer 1 interrupt enable bit
EX1	IE. 2	External interrupt 1 enable bit
ET0	IE. 1	Timer 0 interrupt enable bit
EX0	IE. 0	External interrupt 0 enable bit
User software should never write 1s to reserved bits, because they may be used in future AT89		

Figure 1. Interrupt Sources

Oscillator Characteristics

XTAL1 and XTAL2 are the input and output, respectively, of an inverting amplifier that can be configured for use as an on-chip oscillator, as shown in Figure 2. Either a quartz crystal or ceramic resonator may be used. To drive the device from an external clock source, XTAL2 should be left unconnected white XTAL1 is driven, as shown in Figure 3. There are no requirements on the duty cycle of the external clock signal, since the input to the internal clocking circuitry is through a divide-by-two flip-flop, but minimum and maximum voltage high and low time specifications must be observed.

Figure 2. Oscillator Connections

Note: $\quad \mathrm{C} 1, \mathrm{C} 2=30 \mathrm{pF} \pm 10 \mathrm{pF}$ for Crystais
$=40 \mathrm{pF} \pm 10 \mathrm{pF}$ for Ceramic Resonators
Figure 3. External Clock Drive Configuration

In idle mode, the CPU puts itself to sleep while all the on-chip peripherals remain active. The mode is invoked by software. The content of the on-chip RAM and all the special function registers remain unchanged during this mode. The idle mode can be terminated by any enabled interrupt or by a hardware reset.

Note that when idle mode is terminated by a hardware reset, the device normally resumes program execution from where it left off, up to two machine cycles before the internal reset algorithm takes control. On-chip hardware inhibits access to internal RAM in this event, but access to the port pins is not inhibited. To eliminate the possibility of an unexpected write to a port pin when idie mode is terminated by a resec, the instruction following the one that invokes idie mode should not write to a port pin or to external memory.

In the Power-down mode, the oscillator is stopped, and the instruction that invokes Powerdown is the last instruction executed. The on-chip RAM and Special Function Registers retain their values until the Power-down mode is terminated. Exit from Power-down mode can be initiated either by a hardware reset or by activation of an enabled external interrupt (INTO or INT1). Reset redefines the SFRs but does not change the on-chip RAM. The reset should not be activated before $V_{C C}$ is restored to its normal operating level and must be held active long enough to allow the oscillator to restart and stabilize.

Power-down Mode

Table 5. Status of External Pins During Idle and Power-down Modes

Mode	Program Memory	ALE	PSEN	PORT0	PORT1	PORT2	PORT3
Idle	Internal	1	1	Data	Data	Data	Data
Idle	External	1	1	Float	Data	Address	Data
Power-down	Internal	0	0	Data	Data	Data	Data
Power-down	External	0	0	Float	Data	Data	Data

Program Memory Lock Bits

The AT89S51 has three lock bits that can be left unprogrammed (U) or can be programmed (P) to obtain the additional features listed in the following table.

Table 6. Lock Bit Protection Modes

| Program Lock Bits
 LB1 | | | | LB2 |
| :---: | :---: | :---: | :---: | :--- | LB3 \quad Protection Type | P |
| :--- |
| 1 |

When lock bit 1 is programmed, the logic level at the EA pin is sampled and latched during reset. If the device is powered up without a reset, the latch initializes to a random value and holds that value until reset is activated. The latched value of $\overline{E A}$ must agree with the current logic level at that pin in order for the device to function properly.

Programming the Flash Parallel Mode

The AT89S51 is shipped with the on-chip Flash memory array ready to be programmed. The programming interface needs a high-voltage (12-volt) program enable signal and is compatible with conventional third-party Flash or EPROM programmers.

The AT89S51 code memory array is prcgrammed byte-by-byte.
Programming Algorithm: Before programming the AT89S51, the address, data, and control signals should be set up according to the Flash Programming Modes table (Table 7) and Figures 4 and 5. To program the AT89S51, take the following steps:

1. Input the desired memory location on the address lines.
2. Input the appropriate data byte on the data lines.
3. Activate the correct combination of control signals.
4. Raise $\overline{E A} N_{P P}$ to 12 V .
5. Pulse ALE/PROG once to program a byte in the Flash array or the lock bits. The bytewrite cycle is self-timed and typically takes no more than $50 \mu \mathrm{~s}$. Repeat steps 1 through 5, changing the address and data for the entire array or until the end of the object file is reached.
Data Polling: The ATB9S51 features Data Polling to indicate the end of a byte write cycle. During a write cycle, an attempted read of the last byte written will result in the complement of the written data on P0.7. Once the write cycle has been completed, true data is valid on all outputs, and the next cycle may begin. Data Polling may begin any time after a write cycle has been initiated.

Ready/ $\overline{\mathrm{Busy}}$: The progress of byte programming can also be monitored by the RDY/ $\overline{\mathrm{BSY}}$ output signal. P3.0 is pulled low after ALE goes high during programming to indicate $\overline{B U S Y}$. P3.0 is pulled high again when programming is done to indicate READY.
Program Verify: If lock bits LB1 and LB2 have not been programmed, the programmed code data can be read back via the address and data lines for verification. The status of the individual lock bits can be verified directly by reading them back.
Reading the Signature Bytes: The signature bytes are read by the same procedure as a normal verification of locations $000 \mathrm{H}, 100 \mathrm{H}$, and 200 H , except that P3.6 and P3.7 must be pulled to a logic low. The values returned are as follows.

$$
\begin{aligned}
& (000 \mathrm{H})=1 \mathrm{EH} \text { indicates manufactured by Atmel } \\
& (100 \mathrm{H})=51 \mathrm{H} \text { indicates AT89S51 } \\
& (200 \mathrm{H})=06 \mathrm{H}
\end{aligned}
$$

Chip Erase: In the parallel programming mode, a chip erase operation is initiated by using the proper combination of control signals and by pulsing ALE/PROG low for a duration of 200 ns 500 ns .
In the serial programming mode, a chip erase operation is initiated by issuing the Chip Erase instruction. In this mode, chip erase is self-timed and takes about 500 ms .
During chip erase, a serial read from any address location will return 00 H at the data output.

Programming the Flash Serial Mode

The Code memory array can be programmed using the serial ISP interface while RST is pulled to V_{cc}. The serial interface consists of pins SCK, MOSI (input) and MISO (output). After RST is set high, the Programming Enable instruction needs to be executed first before other operations can be executed. Before a reprogramming sequence can occur, a Chip Erase operation is required.

The Chip Erase operation turns the content of every memory location in the Code array into FFH.

Either ari external system clock can be supplied at pin XTAL1 or a crystal needs to be connected across pins XTAL1 and XTAL2. The maximum serial clock (SCK) frequency should be less than $1 / 16$ of the crystal frequency. With a 33 MHz oscillator clock, the maximum SCK frequency is 2 MHz .

To program and verify the AT89S51 in the serial programming mode, the following sequence is recommended:

1. Power-up sequence:

Apply power between VCC and GND pins.
Set RST pin to "H".
If a crystal is not connected across pins XTAL. 1 and XTAL.2, apply a 3 MHz to 33 MHz clock to XTAL1 pin and wait for at least 10 milliseconds.
2. Enable serial programming by sending the Programming Enable serial instruction to pin MOSI/P1.5. The frequency of the shift clock supplied at pin SCK/P1.7 needs to be less than the CPU clock at XTAL1 divided by 16.
3. The Code array is programmed one byte at a time in either the Byte or Page mode. The write cycle is self-timed and typically takes less than 0.5 ms at 5 V .
4. Any memory location can be verified by using the Read instruction that returns the content at the selected address at serial output MISO/P1.6.
5. At the end of a programming session, RST can be set low to commence normal device operation.

Power-off sequence (if needed):
Set XTAL1 to "L" (if a crystal is not used).
Set RST to "L".
Turn $V_{c c}$ power off.
$\overline{\text { Data }}$ Polling: The $\overline{\text { Data }}$ Polling feature is also available in the serial mode. In this mode, during a write cycle an attempted read of the last byte written will result in the complement of the MSB of the serial output byte on MISO.

Serial

Programming Instruction Set

Programming

 Interface Parallel ModeThe Instruction Set for Serial Programming follows a 4-byte protocol and is shown in Table 8.

Every code byte in the Flash array can be programmed by using the appropriate combination of control signals. The write operation cycle is self-timed and once initiated, will automatically time itself to completion.

Most major worldwide programming vendors offer worldwide support for the Atmel AT89 microcontroller series. Please contact your local programming vendor for the appropriate software revision.

Table 7. Flash Programming Modes

Mode	$V_{c c}$	RST	$\overline{\text { PSEN }}$	$\frac{\text { ALEI }}{\overline{\text { PROG }}}$	$\begin{aligned} & \overline{E A} \\ & V_{p p} \end{aligned}$	P2.6	P2.7	P3.3	P3.6	P3.7	$\begin{gathered} \text { P0.7-0 } \\ \text { Data } \end{gathered}$	P2.3-0	P1.7-0
												Address	
Write Code Data	5 V	H	L	\cdots	12V	L	H	H	H	H	$D_{\text {IN }}$	A11-8	A7-0
Read Code Data	5 V	H	L	H	H	L	L	L	H	H	Dour	A11-8	A7-0
Write Lock Bit 1	5 V	H	L	$\sim^{(3)}$	12V	H	H	H	H	H	X	X	X
Write Lock Bit 2	5 V	H	L	$\sim^{(3)}$	12V	H	H	H	1	L	X	X	X
Write Lock Bit 3	5 V	H	L		12V	H	L	H	H	L	X	X	X
Read Lock Bits $4,2,3$	5 V	H	L	H	H	H	H	1	H	L	$\begin{aligned} & \text { P0.2, } \\ & \text { P0.3, } \\ & \text { P0. } \end{aligned}$	X	X
Chip Erase	5 V	H	L	$\sim \sim^{(1)}$	12 V	H	L	H	L	L	X	X	X
Read Atmel in	5 V	H	L	H	H	L	1	L	L	1	1EH	0000	00 H
Read Device io	5 V	H	L	H	H	L	L	L	L	L	51H	0001	OOH
Read Device ID	5 V	H	L	H	H	L	L	L	L	L	06H	0010	00 H

Notes: 1. Each PROG puise is $200 \mathrm{~ns} \mathbf{- 5 0 0} \mathbf{n s}$ for Chip Erase.
2. Each $\overline{\text { PROG }}$ pulse is $200 \mathrm{~ns}-500$ ns for Write Code Data.
3. Each PROG pulse is $200 \mathrm{~ns}-500 \mathrm{~ns}$ for Write Lock Bits.
4. RDY/ $\overline{\mathrm{BSY}}$ signal is output on P3.0 during prograrnming.
5. $X=$ don't care.

Figure 4. Programming the Flash Memory (Parallel Mode)

Figure 5. Verifying the Flash Memory (Parallel Mode)

A AIIIE

Flash Programming and Verification Characteristics (Parallel Mode)
$T_{A}=20^{\circ} \mathrm{C}$ to $30^{\circ} \mathrm{C}, V_{C C}=4.5$ to 5.5 V

Symbol	Parameter	Min	Max	Units
$V_{\text {Pp }}$	Programming Supply Voltage	11.5	12.5	\checkmark
$l_{\text {PP }}$	Programming Supply Current		10	$m \mathrm{~A}$
l_{cc}	Vcc Supply Current		30	mA
$1 / \mathrm{t}_{\mathrm{clal}}$	Oscillator Frequency	3	33	MHz
$\mathrm{t}_{\text {AVGL }}$	Address Setup to $\overline{\text { PROG }}$ Low	$48 \mathrm{t}_{\mathrm{CLCL}}$		
$\mathrm{t}_{\text {ghax }}$	Address Hold After PROG	48 tcal		
$t_{\text {OVGL }}$	Data Setup to PROG Low	$48 \mathrm{t}_{\mathrm{cLCL}}$		
$\mathrm{t}_{\text {GHOX }}$	Data Hold After PROG	$48 \mathrm{t}_{\mathrm{clCL}}$		
$t_{\text {EHSH }}$	P2.7 (ENABLE) High to $V_{\text {Pp }}$	48 tclal		
$\mathrm{t}_{\text {SHGL }}$	$V_{\text {PP }}$ Setup to $\overline{\text { PROG }}$ Low	10		$\mu \mathrm{s}$
$\mathrm{t}_{\text {GHSL }}$	$V_{\text {pp }}$ Hold After $\overline{\text { PROG }}$	10°		$\mu \mathrm{s}$
$t_{\text {GLGH }}$	PROG Width	0.2	1	$\mu \mathrm{s}$
$\mathrm{t}_{\text {avov }}$	Address to Data Valid		$48 \mathrm{t}_{\text {cla }}$	
tetov	ENABLE Low to Data Valid		$48 \mathrm{tclal}^{\text {che }}$	
$\mathrm{t}_{\text {EHaz }}$	Data Float After ENABLE	0	$48 \mathrm{tacl}^{\text {cla }}$	
$\mathrm{t}_{\text {GHBL }}$	PROG High to BUSY Low		1.0	$\mu \mathrm{s}$
$t_{w c}$	Byte Write Cycle Time		50	$\mu \mathrm{s}$

Figure 6. Flash Programming and Verification Waveforms - Parallel Mode

Figure 7. Flash Memory Serial Downloading

Flash Programming and Verification Waveforms - Serial Mode
Figure 8. Serial Programming Waveforms

Table 8. Serial Programming Instruction Set

Instruction	instruction Format				Operation
	Byte 1	Byte 2	Byte 3	Byte 4	
Programming Enable	10101100	01010011	x x xx x xxx	$\begin{aligned} & \text { xxxx } x x x x \\ & 0110 \quad 1001 \\ & \text { (Output on } \\ & \text { MISO) } \end{aligned}$	Enabie Serial Programming while RST is high
Chip Erase	10101100	100x xxxx	xxxx xxxx	xxxx xxxx	Chip Erase Flash memory array
Read Program Memory (Byte Mode)	00100000		人4048		Read data from Program memory in the byte mode
Write Program Memory (Byte Mode)	01000000				Write data to Program memory in the byte mode
Write Lock Bits ${ }^{(1)}$	10101100	$1110000^{-\infty}$	$x \times x x$ xxxx	$x \mathrm{x} x \times \mathrm{x} x \mathrm{xx}$	Write Lock bits. See Note (1).
Read Lock Bits	00100100	xxxx xxxx	$x \mathrm{xxxx}$ xxxx		Read back current status of the lock bits (a programmed lock bit reads back as a "1")
Read Signature Bytes	00101000	xxxx	< ${ }^{\text {xxx }} \mathrm{xxx0}$	Signature Byte	Read Signature Byte
Read Program Memory (Page Mode)	00110000	xxxx 둔운웅	Byte 0	Byte 1... Byte 255	Read data from Program memory in the Page Mode (256 bytes)
Write Program Memory (Page Mode)	01010000		Byte 0	Byte 1... Byte 255	Write data to Program memory in the Page Mode (256 bytes)

Note: 1. $\mathrm{B} 1=0, \mathrm{~B} 2=0 \rightarrow$ Mode 1. no lock protection $B 1=0, B 2=1 \rightarrow$ Mode 2, lock bit 1 activated $\mathrm{B} 1=1, \mathrm{~B} 2=0 \rightarrow$ Mode 3 , lock bit 2 activated $B 1=1, B 2=1 \rightarrow$ Mode 4 , lock bit 3 activated

Each of the lock bit modes need to be activated sequentially before Mode 4 can be executed.

After Reset signal is high, SCK should be low for at least 64 system clocks before it goes high to clock in the enable data bytes. No pulsing of Reset signal is necessary. SCK should be no faster than $1 / 16$ of the system clock at XTAL1.

For Page Read/Write, the data always starts from byte 0 to 255 . After the command byte and upper address byte are latched, each byte thereafter is treated as data until all 256 bytes are shifted in/out. Then the next instruction will be ready to be decoded.

Serial Programming Characteristics

Figure 9. Serial Programming Timing

Table 9. Serial Programming Characteristics, $T_{A}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=4.0-5.5 \mathrm{~V}$ (Unless Otherwise Noted)

Symbol	Parameter	Min	Typ	Max	Units
$1 / \mathrm{tclcl}$	Oscillator Frequency	3		33	MHz
${ }_{\text {ctal }}$	Oscillator Period	30			ns
$\mathrm{t}_{\text {SHSL }}$	SCK Pulse Width High	8 taCl			ns
$\mathrm{t}_{\text {SLSH }}$	SCK Pulse Width Low	8 taCl			ns
LOVSH	MOSI Setup to SCK High	${ }_{4} \mathrm{Cla}$			ns
$t_{\text {SHOX }}$	MOSi Hold after SCK High	2 tcla			ns
$\mathrm{t}_{\text {SLIV }}$	SCK Low to MISO Valid	10	16	32	ns
$\mathrm{t}_{\text {ERASE }}$	Chip Erase Instruction Cycle Time			500	ms
${ }_{\text {tswc }}$	Serial Byte Write Cycle Time			$64 \mathrm{t}_{\mathrm{CLCL}}+400$	$\mu \mathrm{s}$

Absolute Maximum Ratings*

Operating Temperature $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Voltage on Any Pin
with Respect to Ground-1.0V to +7.0 V
Maximum Operating Voltage .. 6.6 V
DC Output Current... 15.0 mA
*NOTICE: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC Characteristics

The values shown in this table are valid for $T_{A}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ and $\mathrm{V}_{C C}=4.0 \mathrm{~V}$ to 5.5 V , unless otherwise noted.

Symbol	Parameter	Condition	Min	Max	Units
V_{4}	Input Low Voltage	(Except EA)	-0.5	$0.2 \mathrm{~V}_{5 C}-0.1$	V
$\mathrm{V}_{1 \mathrm{~L} 1}$	Input Low Voltage ($\overline{\mathrm{EA}})$		-0.5	$0.2 \mathrm{~V}_{\mathrm{cc}}-0.3$	V
V_{14}	Input High Voltage	(Except XTAL1, RST)	$0.2 \mathrm{~V}_{C C}+0.9$	$\mathrm{V}_{\mathrm{cc}}+0.5$	V
$V_{\text {ith }}$	Input High Voltage	(XTAL1, RST)	0.7 V cc	$\mathrm{V}_{C C}+0.5$	V
$V_{\text {OL }}$	Output Low Voltage ${ }^{(1)}$ (Ports 1,2,3)	$\mathrm{l}_{\mathrm{OL}}=1.6 \mathrm{~mA}$		0.45	V
$V_{\text {OL1 }}$	Output Low Voltage ${ }^{(1)}$ (Port 0, ALE. PSEN)	$\mathrm{I}_{\mathrm{OL}}=3.2 \mathrm{~mA}$		0.45	V
V_{OH}	Output High Voltage (Ports 1,2,3, ALE, $\overline{\text { PSEN }}$)	$\mathrm{l}_{\mathrm{OH}}=-60 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%$	2.4		V
		$\mathrm{I}_{\mathrm{OH}}=-25 \mu \mathrm{~A}$	$0.75 \mathrm{~V}_{\mathrm{cc}}$		V
		$\mathrm{I}_{\mathrm{OH}}=-10 \mu \mathrm{~A}$	0.9 Vcc		V
V_{OH}	Output High Voltage (Port 0 in Externa! Bus Mode)	$\mathrm{I}_{\mathrm{OH}}=-800 \mu \mathrm{~A}, \mathrm{~V}_{\text {CC }}=5 \mathrm{~V} \pm 10 \%$	2.4		v
		$\mathrm{l}_{\mathrm{OH}}=-300 \mu \mathrm{~A}$	$0.75 \mathrm{~V}_{\mathrm{CC}}$		V
		$\mathrm{t}_{\mathrm{OH}}=-80 \mu \mathrm{~A}$	0.9 Vcc		V
$1 / 2$	Logical 0 Input Current (Ports 1.2.3)	$\mathrm{V}_{\mathrm{IN}}=0.45 \mathrm{~V}$		-50	$\mu \mathrm{A}$
$i_{\text {TL }}$	Logical 1 to 0 Transition Current (Ports 1,2,3)	$\mathrm{V}_{\text {IN }}=2 \mathrm{~V} . \mathrm{V}_{C C}=5 \mathrm{~V} \pm 10 \%$		-650	$\mu \mathrm{A}$
I_{1}	Input Leakage Current (Port 0, $\bar{E} \bar{A}$)	$0.45<V_{\text {IN }}<V_{\text {CC }}$		± 10	$\mu \mathrm{A}$
RRST	Reset Pulldown Resistor		50	300	$\mathrm{K} \Omega$
C_{10}	Pin Capacitance	Yest Freq. $=1 \mathrm{MHz}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		10	pF
lcc	Power Supply Current	Active Mode, 12 MHz		25	mA
		Idle Mode, 12 MHz		6.5	mA
	Power-down Mode ${ }^{(2)}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$		50	$\mu \mathrm{A}$

Notes: 1. Under steady state (non-transient) conditions, l_{LL} must be externally limited as foliows:
Maximum I_{OL} per port pin: 10 mA
Maximum IoL per 8-bit port:
Port 0: $26 \mathrm{~mA} \quad$ Ports 1, 2, 3: 15 mA
Maximum total lol for all output pins: 71 mA
If $I_{O L}$ exceeds the test condition, $V_{O L}$ may exceed the related specification. Pins are not guaranteed to sink current greater than the listed test conditions.
2. Minimum V_{CC} for Power-down is 2 V .

AC Characteristics

Under operating conditions, load capacitance for Port 0, ALE $/ \overline{P R O G}$, and $\overline{\text { PSEN }}=100 \mathrm{pF}$; load capacitance for all other outputs $=80 \mathrm{pF}$.
External Program and Data Memory Characteristics

Symbol	Parameter	12 MHz Oscillator		Variable Oscillator		Units
		min	Max	Min	Max	
$1 / \mathrm{tcLa}$	Oscillator Frequency			0	33	MHz
$\mathrm{t}_{\text {LHLI }}$	ALE Pulse Width	127		$2 \mathrm{t}_{\text {cla }}-40$		ns
$\mathrm{t}_{\text {AVLL }}$	Address Valid to ALE Low	43		$\mathrm{t}_{\mathrm{clcl}}-25$		ns
tliax	Address Hold After ALE Low	48		$\mathrm{t}_{\text {clcl }}$-25		ns
tuiv	ALE Low to Valid instruction in		233		$4 \mathrm{ctac}^{-65}$	ns
$t_{\text {LLPL }}$	ALE Low to $\overline{\text { PSEN }}$ Low	43		${ }_{4}{ }_{\text {cta }}$-25		ns
$t_{\text {PLPH }}$	PSEN Pulse Width	205		$3 \mathrm{t}_{\mathrm{CLCL}^{-}-45}$		ns
$t_{\text {PLIV }}$	PSEN Low to Valid Instruction in		145		$3 \mathrm{ctal}^{-60}$	ns
$\mathrm{t}_{\text {PXIX }}$	input Instruction Hold After $\overline{\text { PSEN }}$	0		0		ns
$t_{\text {PxIZ }}$	Input Instruction Float After $\overline{\text { PSEN }}$		59		$\mathrm{t}_{\mathrm{CLCL}}-25$	ns
$\mathrm{t}_{\text {PXAV }}$	$\overline{\text { PSEN }}$ to Address Valid	75		${ }_{\mathrm{CLCL}^{-8}}$		ns
$t_{\text {AVIV }}$	Address to Vatid Instruction in		312		$5 \mathrm{E}_{\mathrm{CLCL}}-80$	ns
$\mathrm{t}_{\text {plaz }}$	PSEN Low to Address Float		10		10	ns
$t_{\text {RLRH }}$	$\overline{\text { RD Pulse Width }}$	400		$6 \mathrm{tctaL}^{-100}$		ns
$\mathrm{t}_{\text {Wluw }}$	$\overline{\text { WR Puise Width }}$	400		$6 \mathrm{tcca}^{-100}$		ns
$\mathrm{t}_{\text {RLDV }}$	$\overline{\mathrm{RD}}$ Low to Valid Data In		252		$5 \mathrm{t}_{\mathrm{CLCL}^{-90}}$	ns
$\mathrm{t}_{\text {RHOX }}$	Data Hold After RD	0		0		ns
$\mathrm{t}_{\text {RHDZ }}$	Data Float After $\overline{\text { RD }}$		97		$2 \mathrm{t}_{\mathrm{CLCL}-28}$	ns
tllov	ALE Low to Valid Data in		517		$8 \mathrm{tclat}^{-150}$	ns
$\mathrm{t}_{\text {AVDV }}$	Address to Valid Data In		585		$9 \mathrm{t}_{\text {clal }}-165$	ns
tuw	ALE Low to $\overline{\mathrm{RD}}$ or $\overline{W R}$ Low	200	300	$3 \mathrm{CLCL}^{-50}$	$3 \mathrm{CLLCL}+50$	ns
$\mathrm{t}_{\text {AWW }}$	Address to $\overline{\mathrm{RD}}$ or WR Low	203		$4 \mathrm{CLLCL}^{-75}$		ns
$\mathrm{t}_{\text {Quwx }}$	Data Valid to WR Transition	23		$\mathrm{tclct}^{\text {- }} 30$		ns
town	Data Valid to $\overline{W R}$ High	433		7 CLCL 130		ns
$\mathrm{t}_{\text {WHax }}$	Data Hold After WR	33		${ }_{\text {tclal- }}$		กs
$\mathrm{t}_{\text {RLAZ }}$	$\overline{\mathrm{RD}}$ Low to Address Float		0		0	ns
$t_{\text {WHiLH }}$	$\overline{\mathrm{RD}}$ or $\overline{W R}$ High to ALE High	43	123	$\mathrm{t}_{\text {clcl- }}$ 25	$\mathrm{tact}^{\text {cte }}+25$	ns

External Program Memory Read Cycle

External Data Memory Read Cycle

External Data Memory Write Cycle

External Clock Drive Waveforms

External Clock Drive

Symbol	Parameter	Min	Max	Units
$1 / t_{\text {CLCL }}$	Oscillator Frequency	0	33	MHz
$\mathrm{t}_{\text {CLCL }}$	Clock Period	30		ns
$\mathrm{t}_{\text {CHCX }}$	High Time	12		ns
$\mathrm{t}_{\text {CLCX }}$	Low Time	12		ns
$\mathrm{t}_{\mathrm{CLCH}}$	Rise Time		5	ns
$\mathrm{t}_{\mathrm{CHCL}}$	Fall Time		5	ns

Serial Port Timing: Shift Register Mode Test Conditions

The values in this table are valid for $\mathrm{V}_{\mathrm{CC}}=4.0 \mathrm{~V}$ to 5.5 V and Load Capacitance $=80 \mathrm{pF}$.

Symbol	Parameter	12 MHz Osc		Variable Oscillator		Units
		Min	Max	Min	Max	
$\mathrm{t}_{\mathrm{LLXL}}$	Serial Port Clock Cycle Time	1.0		$12 \mathrm{t}_{\mathrm{clcL}}$		$\mu \mathrm{s}$
$\mathrm{t}_{\text {QVXH }}$	Output Data Setup to Clock Rising Edge	700		$10 \mathrm{CLCL}^{-133}$		ns
$\mathrm{t}_{\mathrm{xHOX}}$	Output Data Hold Affer Clock Rising Edge	50		$2 \mathrm{tacL}^{-80}$		ns
$\mathrm{t}_{\mathrm{XHDX}}$	Input Data Hold After Clock Rising Edge	0		0		ns
$\mathrm{t}_{\mathrm{XHDV}}$	Clock Rising Edge to Input Data Valid		700		${ }^{10 \mathrm{t}_{\mathrm{CLCL}}-133}$	ns

Shift Register Mode Timing Waveforms

AC Testing input/Output Waveforms ${ }^{(1)}$

Note: 1. AC Inputs during testing are driven at $V_{C C}-0.5 \mathrm{~V}$ for a logic 1 and 0.45 V for a logic 0 . Timing measurements are made at $V_{i H}$ \min. for a logic 1 and $V_{i L}$ max. for a logic 0 .

Float Waveforms ${ }^{(1)}$

Note: 1. For timing purposes, a port pin is no longer floating when a 100 mV change from load voltage occurs. A port pin begins to float when a 100 mV change from the loaded $\mathrm{V}_{\mathrm{OH}} \mathrm{N}_{\mathrm{OL}}$ level occurs.

Ordering Information

$\begin{aligned} & \text { Speed } \\ & (\mathrm{MHz}) \end{aligned}$	Power Supply	Ordering Code	Package	Operation Range
24	4.0 V to 5.5 V	AT89S51-24AC AT89S51-24JC AT89S51-24PC AT89S51-24SC	44A 44 J 40 P 6 42 PS 6	Commercial $\left(0^{\circ} \mathrm{C}\right.$ to $70^{\circ} \mathrm{C}$)
		AT89551-24A AT89551-24.J AT89S51-24PI AT89S51-24SI	44A 44. 40P6 42PS6	$\begin{aligned} & \text { Industrial } \\ & \left(-40^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C}\right) \end{aligned}$
33	4.5 V to 5.5 V	AT89S51-33AC AT89S51-33JC AT89S51-33PC AT89S51-33SC	$\begin{aligned} & 44 \mathrm{~A} \\ & 44 \mathrm{~J} \\ & 40 \mathrm{P} 6 \\ & 42 \mathrm{PS} 6 \end{aligned}$	Commercial $\left(0^{\circ} \mathrm{C}\right.$ to $70^{\circ} \mathrm{C}$)

	Package Type
44A	44-lead, Thin Plastic Gull Wing Quad Flatpack (TQFP)
44J	44-lead, Plastic J-leaded Chip Carrier (PLCC)
40P6	40-pin, $0.600^{\prime \prime}$ Wide, Plastic Dual Inline Package (PDIP)
42PS6	42-pin, 0.600 " Wide, Plastic Dual Inline Package (PDIP)

Packaging Information
44A - TQFP

44J - PLCC

COMMON DIMENSIONS
(Unit of Measure $=\mathrm{mm}$)

Notes: 1. This package conforms to JEDEC reference MS-018, Variation AC.
2. Dimensions D1 and E1 do not include mold protrusion.

Allowable protrusion is $.010^{\prime \prime}(0.254 \mathrm{~mm})$ per side. Dimension D1 and E1 include mold mismatch and are measured at the extreme material condition at the upper or lower parting line.
3. Lead coplanarity is $0.004^{\prime \prime}(0.102 \mathrm{~mm})$ maximum.

10/04/01

	TITLE 44J. 44-lead, Plastic J-leaded Chip Carrier (PLCC)	DRAWING NO. 44J	$\begin{gathered} \text { REV. } \\ B \end{gathered}$

40P6 - PDIP

Notes: 1. This package conforms to JEDEC reference MS-011, Variation AC.
2. Dimensions D and E1 do not include mold Flash or Protrusion. Mold Fiash or Protrusion shall not exceed 0.25 mm ($0.010^{\prime \prime}$).

COMMON DIMENSIONS
(Unit of Measure $=\mathrm{mm}$)

SYMBOL	MIN	NOM	MAX	NOTE
A	-	-	4.826	
A1	0.381	-	-	
D	52.070	-	52.578	Note 2
E	15.240	-	15.875	
E1	13.462	-	13.970	Note 2
B	0.356	-	0.559	
B1	1.041	-	1.651	
L	3.048	-	3.556	
C	0.203	-	0.381	
eB	15.494	-	17.526	
e	2.540 TYP			

09/28/01

Atmel Corporation
2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 487-2600

Regional Headquarters
Europe
Atmel Sarl
Route des Arsenaux 41
Case Postale 80
CH-1705 Fribourg
Switzerland
Tel: (41) 26-426-5555
Fax: (41) 26-426-5500
Asia
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimshatsui
East Kowloon
Hong Kong
Tel: (852) 2721-9778
Fax: (852) 2722-1369
Japan
9F, Tonetsu Shinkawa BIdg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
Tel: (81) 3-3523-3551
Fax: (81) 3-3523-7581

Atmel Operations

Memory
2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 436-4314
Microcontrollers
2325 Orchard Parkway
San Jose, CA 95131, USA
Tei: 1(408) 441-0311
Fax: 1(408) 436-4314
La Chantrerie
BP 70602
44306 Nantes Cedex 3, France
Tel: (33) 2-40-18-18-18
Fax: (33) 2-40-18-19-60
ASIC/ASSP/Smart Cards
Zone Industrielle
13106 Rousset Cedex, France
Tel: (33) 4-42-53-60-00
Fax: (33) 4-42-53-60-01
1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906, USA
Tel: 1(719) 576-3300
Fax: 1(719) 540-1759
Scottish Enterprise Technology Park
Maxwell Building
East Kilbride G75 0QR, Scotland
Tel: (44) 1355-803-000
Fax: (44) 1355-242-743

RF/Automotive

Theresienstrasse 2
Postfach 3535
74025 Heilbronn, Germany
Tel: (49) 71-31-67-0
Fax: (49) 71-31-67-2340
1150 East Cheyenne Mtn. Bivd.
Colorado Springs, CO 80906, USA
Tel: 1(719) 576-3300
Fax: 1(719) 540-1759
Biometrics/lmaging/Hi-Rel MPU/
High Speed Converters/RF Datacom
Avenue de Rochepleine
BP 123
38521 Saint-Egreve Cedex. France
Tel: (33) 4-76-58-30-00
Fax: (33) 4-76-58-34-80

Literature Requests

www.atmel.com/literature

Abstract

Disclaimer: Atmei Corporation makes no warranty for the use of its products, other than those expressly contained in the Company's standard warranty which is detailed in Atmel's Terms and Conditions located on the Company's web site. The Company assumes no responsibility for any errors which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice, and does not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of Atmel are granted by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel's products are not authorized for use as critical components in life support devices or systems.

© Atmel Corporation 2003. All rights reserved. Atmel ${ }^{(1)}$ and combinations thereof are the registered trademarks of Atmel Corporation or its subsidiaries. MCS ${ }^{\circledR}$ is a registered trademark of Intel Corporation. Adobe ${ }^{(\mathbb{Q}}$ and Acrobat ${ }^{(\mathbb{E}}$ are the registered trademarks of Adobe Systems Inc. Other terms and product names may be the trademarks of others.

TLP434A:\&RLP434A RF ASK Hybrid Modules for Radio Control (New Version)

TLP434A UItra Small Transmitter

Casyltik Wifolass

RLP434A SAW Based Receiver

Modulation : ASK Supply Voltage : 3.3-8.0 VOC Output: Digital \& Linear

Symbol	Parameter	Conditions	Min	Typ	Max	
Vcc	Operating supply voltage		3.3	5.0 V	6.0	V
Itol	Operating Current		.	4.5		mA
Vdata	Data Out	Idata $=+200 \mathrm{uA}$ (lligh)	$\mathrm{V}_{\mathrm{cc}-0.5}$.	Vec	V
		Idata $=10 \mathrm{uA}$ (Low)	-	-	0.3	V

Electrical Characteristics

Characteristics	SYM	Min	Typ	Max	Unit
Operation Padio Frequency	FC	315,418 and 433.92			
Sensitivily	Pref		-110		MHz
Channel Width			+500		KBm
Nolse Hquivalen1 BWW			4		Khz
Receiver Tum On Time			5		ms
Operation Temperature	Top	.20	-	80	C
Bascboard Data Rate			4.8		KHz

Application Circuit
Typical RF Receiver using ITT12D-181)IP, a Binary 12 bit Decoder will 8 bil uC ITT48RXX from Holtek Semiconductor line.

HT12A/HT12E 2^{12} Series of Encoders

Features

- Operating voltage
$-2.4 \mathrm{~V}-5 \mathrm{~V}$ for the HT12A
$-2.4 \mathrm{~V} \sim 12 \mathrm{~V}$ for the HT12E
- Low power and high noise immunity CMOS technology
- Low standby current: $0.1 \mu \mathrm{~A}$ (typ.) at $V_{D D}=5 V$
- HT12A with a 38 kHz carrier for infrared transmission medium

Applications

- Burglar alarm system
- Smoke and fire alarm system
- Garage door controllers
- Car door controllers

General Description

The 2^{12} encoders are a series of CMOS LSIs for remote control system applications. l'hey are capable of encoding information which consisis of N address bits and $12-N$ data bits. Each address/data input can be set to one of the two logic states. The programmed addresses/data are transmitted together with the header bits

- Minimum transmission word
- Four words for the HT12E
- One word for the HT12A
- Built-in oscillator needs only 5% resistor
- Data code has positive polarity
- Minimal external components
- HT12A/E: 18-pin DIP/20-pin SOP package
- Car alarm system
- Security system
- Cordless telephones
- Other remote control systems

Selection Table

Function Part No.	Address No.	Address/ Data No.	Data No.	Oscillator	Trigger	Package	Carrier Output	Negative Polarity
H112A	8	0	4	455 kHz resonator	D8~111	$\begin{aligned} & 18 \mathrm{DIP} \\ & 20 \mathrm{SOP} \end{aligned}$	38 hHz	No
HTC12E	8	4	9	RC oscillator	$\overline{T E}$	$\begin{aligned} & 18 \mathrm{DIP} \\ & 20 \mathrm{SOP} \end{aligned}$	No	No

Note: Address/Data represents pins that can be address or data according to the decoder requirement.

Block Diagram

$\overline{T E}$ trigger
HT12E

DATA trigger
IT12A

Note: The address data pins are available in various combinations (refer to the address/data table).

Pin Assignment

8－Address
 4－Data

A0	1 V 1	曰VDO
A1－	2	7 boout
A2	31	5 日x1
A3	415	P2
${ }^{4} 4$	51	－Livis
A5	61	ㄱ011
A6－	$7 \quad 12$	［010
A7	$8 \quad 1$	De9
VSS	91	万08

HT12A
－ 18 DIP

8－Address
4－Data

8－Address
4－Address／Data

8－Address
4－Address／Data

Pin Description

Pin Name	I／O	Internal Connection	Description
A0～A7	I	CMOS IN Pull－high （HT12A）	Input pins for address A0～A7 setting These pins can be externally set to VSS or left open
		NMOS TRANSMISSION GATE PROTECTION DIODE （HT12E）	
AD8～AD11	I	NMOS TRANSMISSION GATE PROTECTION DIODE （HT12E）	Input pins for address／data AD8～AD11 setting These pins can be externally set to VSS or left open
D8～D11	I	CMOS IN Pull－high	Input pins for data D8～D11 setling and transmission en－ able，active low These pins should be externally set to VSS or left open （see Note）
DOUT	0	CMOS OUT	Encoder data serial transmission output
L／MB	I	CMOS IN Pull－high	Latch／Momentary transmission format selection pin： Latch：Floating or VDD Momentary：VSS

Pin Name	I/O	Internal Connection	Description
TE	I	CMOS IN Pull-high	Transmission enable, active low (see Note)
OSC1	I	OSCILLATOR 1	Oscillator input pin
OSC2	O	OSCILLATOR 1	Oscillator output pin
X1	I	OSCILLATOR 2	455 kHz resonator oscillator input
X 2	O	OSCILLATOR 2	455 kHz resonator oscillator output
VSS	1	-	Negative power supply, grounds
VDD	I	-	Positive power supply

Note: D8~D11 are all data input and transmission enable pins of the HT12A.
$\overline{\mathrm{TE}}$ is a transmission enable pin of the HT12E.
Approximate internal connections

Absolute Maximum Ratings

Supply Voltage (HT12A)-0.3V to 5.5V	Supply Voltage (HT12E)-0.3V to 13 V
Input Voltage.................. $\mathrm{V}_{\mathrm{Ss}}-0.3$ to $\mathrm{V}_{\mathrm{Dd}}+0.3 \mathrm{~V}$	Storage Temperature...............-50 ${ }^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
Operating Temperature.............-20 $-2{ }^{\circ}$ to $75^{\circ} \mathrm{C}$	

Note: 'These are stress ratings only. Stresses exceeding the range specified under "Absolute Maximum Ratings" may cause substantial damage to the device. Functinnal operation of this device at other conditions beyond those listed in the specification is not implied and prolonged exposure to exireme conditions may afiect device reliability.

HT12A/HT12E

Electrical Characteristics

HT12A
$T a=25^{\circ} \mathrm{C}$

Symbol	Parameter	Test Conditions		Min.	Typ.	Max.	Unit
		$\mathrm{V}_{\text {DD }}$	Conditions				
V_{DO}	Operaing Voliage	-	--	2.4	3	5	V
ISTB	Standby Current	3V	Oscillator stops	-	0.1	1	$\mu \mathrm{A}$
		5 V		-	0.1	1	$\mu \mathrm{A}$
I_{DD}	Operating Current	3 V	No load $r_{\mathrm{OSC}}=455 \mathrm{kHz}$	-	200	400	$\mu \mathrm{A}$
		5 V		-	400	800	$\mu \mathrm{A}$
Inout	Output Drive Current	5 V	$\mathrm{V}_{\mathrm{OH}}=0.9 \mathrm{~V}_{\mathrm{DD}}$ (Source)	-1	-1.6	-	mA
			$\mathrm{V}_{\mathrm{OL}}=0.1 \mathrm{~V}_{\mathrm{DD}}$ (Sink)	2	3.2	-	mA
V_{IH}	"Hi Input Voltage	-	-	$0.8 \mathrm{~V}_{\mathrm{DL}}$	-	V_{DE}	V
V_{IL}	"L" Input Voliage	-	-	0	-	$0.2 \mathrm{Y}_{\mathrm{DD}}$	V
$\mathrm{R}_{\text {DATA }}$	D8~D11 Pull-high Resistance	5 V	$\mathrm{V}_{\mathrm{DATA}}=0 \mathrm{~V}$	-	150	300	k n

HT12E $\quad \mathrm{Ta}=25^{\circ} \mathrm{C}$

Symbol	Parameter		Test Conditions	Min.	Typ.	Max.	Unit
		V ${ }_{\text {DD }}$	Conditions				
V_{DD}	Operating Voltage	-	-	2.4	5	12	V
$\mathrm{I}_{\text {STB }}$	Standby Current	3 V	Oscillator stops	-	0.1	1	$\mu \mathrm{A}$
		12 V		-	2	4	$\mu \mathrm{A}$
I_{DD}	Operating Current	3 V	No load $\mathrm{f}_{\mathrm{OSC}}=3 \mathrm{kHz}$	-	40	80	μA
		12V		-	150	300	1.4
$\mathrm{I}_{\text {dout }}$	Output Drive Current	5V	$\mathrm{V}_{\mathrm{OH}}=0.9 \mathrm{~V}_{\mathrm{DD}}$ (Source)	-1	-1.6	-	mA
			$\mathrm{V}_{\text {OL }}=0.1 \mathrm{~V}_{\text {DD }}$ (Sink)	1	1.6	-	mA
V_{TH}	"H" Input Voltage	-	-	$0.8 \mathrm{~V}_{\mathrm{po}}$	-	V_{DD}	V
V_{LL}	"L" Input Voltage	-	-	0	-	0.2 VDD	V
fosc	Oscillator Frequency	5 V	$\mathrm{R}_{\mathrm{OSC}}=1.1 \mathrm{M} \Omega$	-	3	-	kHz
$\mathrm{R}_{\text {TE }}$	TE Pull-high Resistance	5 V	$\mathrm{V}_{\overline{\mathrm{TE}}}=0 \mathrm{~V}$	-	1.5	3	M

Functional Description

Operation

The 2^{12} series of encoders begin a 4 -word transmission cycle upon receipt of a transmission enable (TE for the HT12E or D8~D11 for the HT12A, active low). This cycle will repeat itself as long as the transmission enable ($\overline{\mathrm{TE}}$ or D8~D11) is held low. Once the transmission enable returns high the encoder output completes its final cycle and then stops as shown below.

Transmission timing for the HT12E

Transmission timing for the HT12A (L/MB=Floating or VDD)

Transmission timing for the $\mathrm{H}^{\top} 12 \mathrm{~A}(1 / \mathrm{MB}=\mathrm{VSS})$

Information word

If $L / M B=1$ the device is in the latch mode (for use with the latch type of data decoders). When the transmission enable is removed during a transmission, the DOUT pin outputs a complete word and then stops. On the other hand, if $\mathrm{T} / \mathrm{MB}=0$ the device is in the momentary mode (for use with the momentary type of data decoders). When the transmission enable is removed during a transmission, the DOUT outputs a complete word and then adds 7 words all with the " 1 " data code.
An information word consists of 4 periods as illustrated below.

Composition of information

Address/data waveform

Each programmable address/data pin can be externally set to one of the following two logic states as shown below.

AddressThata bit waveform for the HT12E

Aderessinata hit, waveform for the HT12A

The address/data bits of the HT12A are transmitted with a 38 kHz carrier for infrared remote controller flexibility.

Address/data programming (preset)

The status of each address/data pin can be individually pre-set to logic "high" or "low". If a transmis-sion-enable signal is applied, the encoder scans and transmits the status of the 12 bits of address/data serially in the order A0 to AD11 for the HT12E encoder and A0 to D11 for the HT12A encoder.
During information iransmission these bits are transmitled with a preceding synchronization bit. If the trigger signal is not applied, the chip enters the standby mode and consumes a reduced current of less than $1 \mu \mathrm{~A}$ for a supply voltage of 5 V .
Usual applications preset the address pins with individual security codes using DIP switches or PCB wiring, while the data is selected by push butions or electronic switches.
The following figure shows an application using the HT12E:

The transmitted information is as shown:

| Pilot

 Syac. | A0 | A1 | A2 | A3 | A4 | A5 | A6 | A7 | AD8 | AD9 | AD10 | AD11 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

Address/Data sequence

The following provides the address/data sequence table for various models of the 2^{12} series of encoders. The correct device should be selected according to the individual address and data requirements.

Part No.	Address/Data Bits											
	0	1	2	3	4	5	6	7	8	9	10	11
HT12A	A0	A1	A2	A3	A4	A5	A6	A7	D8	D9	D10	D11
ITT12E	A0	A1	A2	A3	A4	A5	A6	A7	AD8	AD9	AD10	AD11

Transmission enable

For the HT12E encoders, transmission is enabled by applying a low signal to the $\overline{T E}$ pin. For the HT12A encoders, transmission is enabled by applying a low signal to one of the data pins D8~D11.

Two erroneous HT12E application circuits

The HT12E must follow closely the application circuits provided by Holtek (see the "Application circuits").

- Error: $A D 8 \sim A D 11$ pins inpul voltage $>V_{D D}+0.3 V$

- Error: The IC's power source is activated by pins AD8~AD11

Flowchart

- HT12A

- HT12E

Note: D8 - D11 are transmission enables of the HT12A.
$\overline{\mathrm{TE}}$ is the transmission enable of the HT12E.

Oscillator frequency vs supply voltage

The recommended oscillator frequency is $\mathrm{f}_{\text {OscD }}$ (decoder) $\cong 50 \mathrm{f}_{\text {OSCE }}$ (HT12E encoder) $=\frac{1}{3} \mathrm{COSCE}$ (HT 12 A encoder)

Application Circuits

Note: Typical infrared diode: EL-1L2 (KODENSHI CORP.)
Typical RF transmitter: JR-220 (JUWA CORP.)

Holtek Semironduetor Inc. (Headquarters)
Nin.3, Creation Hd. II, Science-hased Industrial Park, Hsinchu, Taiwan, K.O.C.
Tel: 886-2.56:3-1999
Fax: : sict-3-5fis-1189
Holtek Semiconductor Inc. (Taipei Office)
11F, No. 57 ff , Sce. 7 Chung Hsinnti. Kd., Taipei, 'Taiwan, k.O.C.
Tril: 886-2-2782-9635
Fax: 886-2-278:96:36
Fax: $886 \cdot 2 \cdot 2782.7128$ (International salles botline)
Holtek Semiconductor (Hong Kong) Ltd.
KM. 711 , Tower 2: Chnung Sha Wan Pinza, 833 Choung Sha Wan Kid., Kowloon, Hong Kong
Trol: 8ล2-2.74́n.8288
F:ax: 85פ2. $74 \%-8657$
Holtek Semiconductor (Shanghai) Ltd.
7th Floor, Building 2, Nos89, Yi Shan Ró., Shanghai, China
Tol: 021-648ล- 2 ลifo
Fox: 021-6485-0313
Holmate Technology Corp.
48531 Warm Springs Boulevard, Suite 413, Freniont, CA 94.539
Tel: $510-252-9850$
F'ax: 510-252-9885

Copyright $\because 200$ by HOLTEK SEMICONDUCTOR INC.

The information appearing in this 1)ata Sheet is believed to be aceurate at the time of publication. However, Holtek assumes no responsibility arising from the use of the specifications deseribed. The applications mentioned herein are used solely for the purpose of illustration and Holtek makes no warranty or representation that such applications will be suitabie without further modification, nor recommends the use of its products for application shat may pres ent a risk to human life due to malfunction or otherwise. Holtek reserves the right to alter its products without prior notification. For the most up-to-date information, please visit our web site at http://www.holtek.com.tw.
2^{12} Series of Decoders

Features

- Operating voltage: $2.4 \mathrm{~V} \sim 12 \mathrm{~V}$
- Low power and high noise immunity CMOS technology
- Low standby current
- Capable of decoding 12 bits of information
- Pair with Holtek's $2^{i 2}$ series of encoders
- Binary address setting
- Received codes are checked 3 times

Applications

- Burglar alarm system
- Smoke and fire alarm system
- Garage door controllers
- Car door controllers

General Description

The 2^{12} decoders are a series of CMOS LSIs for remote control system applications. They are paired with Holtek's 2^{12} series of encoders (refer to the encoùet/aecoder cross teference table). For proper operation, a pair of encoder/decoder with the same number of addresses and data format should be chosen.
The decoders receive serial addresses and data from a programmed 2^{12} series of encoders that are transmitted by a carrier using an RF or an IR transmission medium. They compare the serial input data three times continuously with

- Address/Data number combination
- HT12D: 8 address bits and 4 data bits
- HT12F: 12 address bits only
- Built-in oscillator needs only 5% resistor
- Valid transmission indicator
- Easy interface with an RF or an infrared transmission medium
- Minimal external components
- Car alarm system
- Security system
- Cordless telephones
- Other remote control systems
their local addresses. If no error or unmatched codes are found, the input data codes are decoded and then transferred to the output pins. The vip pin aiso goes high to iñuricaie a vaìù transmission.
The 2^{12} series of decoders are capable of decoding informations that consist of N bits of address and $12-\mathrm{N}$ bits of data. Of this series, the HT12D is arranged to provide 8 address bits and 4 data bits, and HT12F is used to decode 12 bits of address information.

Selection Table

Finction fart No.	Address No.	Data		VT	Oscillator	Trigger	Package
		No.	Type				
HTILD	8	4	L	\checkmark	RCosciliator	DIN active "Hi"	18 Dipizo Sop
HT12F	12	0	-	\checkmark	RC oscillator	DIN active "Hi"	18 DIP/20 SOP

Notes: Data type: L stands for latch type data output.
VT can be used as a momentary data output.

Block Diagram

Note: The address/data pins are available in various combinations (see the address/data table).

Pin Assignment

Pin Description

Pin Name	I/O	Internal Connection	Description
A0~A11	1	rmos TRANSMISSION GATE	Input pins for address A0~A11 selling They can be externally set to VDi or VSS.
D8~D11	0	CMOS OUT	Output data pins
DIN	1	CMOS N	Serial data input pin
vi	0	CMOSOUT	Validitansmission, active high
OSCl	I	OSCILLATOR	Oscillator input pin
OSC2	0	OSCILLATOR	Oscillator output pin
VSS	I	-	Negative power supply (GND)
Ypo	$\underline{1}$	--	Positive power supply

Approximate internal connection circuits

NiviOS TRANSMISSION GATE	CMOS OUT	CMOS ${ }^{\text {N }}$	OSCILLATOR
$\ldots \frac{1}{\sqrt{4}} \square$			

Absolute Maximum Ratings

Supply Voltage \qquad -0.3 V to 13 V

Storage Temperature
$-50^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
Input Voltage $\mathrm{V}_{\mathrm{SC}}-0.3$ to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$

Operating Temperature $-20^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}$

Note: These are stress ratings only. Stresses exceeding the range specified under "Absolute Maximum Ratings" may cause substantial damage to the device. Functional operation of this device at other conditions beyond those listed in the specification is not implied and prolonged exposure to extreme conditions may affect device reliability.

Electrical Characteristics
$\mathrm{Ta}=25^{\circ} \mathrm{C}$

Symbol	Parameter	Test Conditions		Min.	Typ.	Max.	Unit
		$\mathrm{V}_{\text {DD }}$	Conditions				
V_{DD}	Operating Voltage	-	-	2.4	5	12	V
$\mathrm{I}_{\mathrm{STB}}$	Standby Current	5 V	Oscillator stops	-	0.1	1	$\mu \mathrm{A}$
		12 Y		-	2	4	$\because A$
I_{DD}	Operating Current	5 V	No iond $5 \mathrm{c}=150 \mathrm{t} 4 \mathrm{y}$	-	200	400	$\mu \mathrm{A}$
r_{0}	Dita Ouipui Surce Curtent (DO~D11)	5 V	$\mathrm{V}_{\mathrm{OH}}=4.5 \mathrm{~V}$	-1	-1.6	-	mA
	Data Ouipui Sink Current (DS~D11)	5 V	$\mathrm{V}_{\mathrm{OL}}=0.5 \mathrm{~V}$	1	1.6	-	mA
I_{VT}	VT Guiput Source Curreni	5 V	$\mathrm{V}_{\mathrm{OH}}=4.5 \mathrm{~V}$	-1	-1.6	-	mat
	VT Output Sink Current		$\mathrm{V}_{\mathrm{OL}}=0.5 \mathrm{~V}$	1	1.6	-	mA
V_{IH}	"H" Input Voltage	5 V	---	3.5	-	5	V
V_{LL}	"L" Input Voltage	5V	-	0	-	1	V
tosc	Oscillator Frequency	5 V	Pusci=51k	-	150	-	LHz

Functional Description

Operation

The 2^{12} series of decoders provides various combinations of addresses and data pins in different packages so as to pair with the 2^{22} series of encoders.

The decoders receive data that are transmitted by an encoder and interpret the first N bits of
 as data, where N is the address code number. A signal on the DIN pin activates the oscillator which in turn decodes the incoming address and data. The decoders wili then check the received aưuress three times contimuousiy. If the received addrese codes all mateh the contents of the decoder's local address, the $12-\mathrm{N}$ bits of data are decoded to activate the output pins and the VT pin is set high to indicate a valid bransmissioun. This wili iast uniéss the adùress code is incorrect or no sident is received.
The output of the vepin is hirk only when the transmission is valid Otherwise it is always low.

Output type

Of the $\hat{2}^{12}$ series of decoders, the HT1 $2 F$ has no data output pin but its Vmpin cun be used as a momentary data output. The HT12D, on the other hand, provides 4 latch type data pins whose data remain unchanged until new data are received.

Part No.	Data Pins	Address	Output Rype	Operating VoItage
HT12D	4	8	Latch	$2.4 \mathrm{~V}-12 \mathrm{~V}$
HT125	0	12	-	$2.4 \mathrm{~V}-12 \mathrm{~V}$

Flowchart

The oscillator is disabled in the standby state and activated when a logic "high" signal applies to the DIN pin. That is to say, the DIN should be kept low if there is no signal input.

Decoder timing

Encoder/Decoder cross reference table

Decoders Part No.	Data Pins	Adodress Pins	VT	Pair Encoder	Package			
					Encoder		Decoder	
					DIP	SOP	DIP	SOP
HTI2D	4	8	\checkmark	HT12A	18	20	18	20
				HT12E	18	20		
HT12F	0	12	\checkmark	HTi2A	18	20	18	20
				HTLEE	18	20		

Address/Rata sequence

The following table provides address'data sequence for various models of the 2^{12} series of decoders. A correct device should be chosen according to the requirements of the individual addresses and data.

Part No.	Address/Data Rits											
	0	1	2	3	4	5	6	7	3	9	10	il
HT12D	A0	A1	A2	A3	A4	A5	A6	A7	D8	D9	D10	D11
HT12F	A0	A1	A2	A3	A4	A5	A6	A7	A8	A9	A10	A11

Oscillator frequency vs supply voltage

The recommended oscillator frequency is $\mathrm{f}_{\mathrm{OSCD}}$ (decoder) $\cong 50 \mathrm{f}_{\mathrm{OSCE}}$ (H T12E encoder) $=\frac{1}{3} f_{\text {OECE }}$ (HTT12A enender).

Application Circuits

Notes: Typical infrared receiver: PIC-12043T/FIC-12043S (KODESHI CORP.) or LTM9052 (LITEON CORP.)
Typical RF receiver: JR-200 (JUWA CORP.)
RE-99 (MING MICROSYSTEM, U.S.A.)

Holtek Semiconductor Inc. (Headquarters)

No. Greation Pid. II, Science-based incustrial Park, Hsinchu, Taiwan, R.O.C.
Tel: 886-3-563-1999
Fax: 856-3-563-1189
Holtek Semiconductor Inc. (Taipei Office)

Tel: 886-2-2782-9635
Fax: 886-2-2782-9636
Fax: : Ese-2-2782-712E (international sales hothine)

RM.711. Tower 2, Cheung Sha Wan Plaza. 833 Cheung Sha Wan Rd.. Kowloon, Hong Kong
Tel: 852-2-745-8288
Fai: 852-2-7420-8657
Holtek Semiconductor (Shanghai) Ltd.
7 th Floor, Building 2, No. 889 , Yi Shan Road, Shanghai, China
Tel:021-6485-5560
Fax:021-6485-0313
Holmate Technology Corp.
485331 Warm Springs Boulcvard, Suite 413, Fremont, CA 945.39
Tel: 510-252-9880
Fax: 510-252-9885

[^1]
GP1A30R

OPIC Photointerrupter with Encoder Function

Features

1. 2-phase (A, B) digital output
2. Possible to use plastic disk
3. High sensing accuracy
(Disk slit pitch: 0.7 mm)
4. TTL compatible output
5. Compact and light

Applications

1. Electronic typewriters, printers
2. Numerical control machines

Absolute Maximum Ratings			$\left(\mathrm{Ta}=25^{\circ} \mathrm{C}\right)$	
	Parameter	Symbol	Rating	Unit
Input	Forward current	I_{F}	65	mA
	${ }^{\text {TP Peak forward current }}$	$\mathrm{Ifm}^{\text {m }}$	1	A
	Reverse voltage	V_{R}	6	V
	Power dissipation	P	100	mW
Output	Supply voltage	V_{CE}	7	V
	Low level outut cument	Iot	20	mA
	Power dissipation	Po	250	nW
Operating temperature		Tup	010+70	${ }^{\circ} \mathrm{C}$
Storage temperature		$T_{\text {sta }}$	- $4010+88$	${ }^{\circ} \mathrm{C}$
${ }^{2}$ Soldering temperature		$\mathrm{T}_{\text {sti }}$	260	${ }^{\circ} \mathrm{C}$

*1 Pulse width $<=100 \mu \mathrm{~s}$, Duty ration $=0.01 \quad$ *2 For 5 seconds
(Unit : mm)
Outline Dimensions
*" OPIC" (Optical IC) is a trademark of the SHARP Corporation An OPIC consiss of a hight-detecting element and signalprocessing circuit integrated onto a single chip.

Parameter		Symbol	Conditions	MN.	TYP.	MAX.	Unit
Input	Forward voltage	V_{E}	$\mathrm{Ta}=25^{\circ} \mathrm{C}, 1 \mathrm{~F}=30 \mathrm{~mA}$	-	1.2	1.5	V
	Reverse current	I_{R}	$\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{R}}=3 \mathrm{~V}$	-	-	10	$\mu \mathrm{A}$
Output	Operating supply voltage	VCC		4.5	5.0	5.5	V
	High level output voltage	Voh	${ }^{3} \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{If}_{\mathrm{F}}=30 \mathrm{~mA}$	2.4	4.9	-	V
	Low level output voltage	Vot	${ }^{3} \mathrm{IOL}=8 \mathrm{~mA}, \mathrm{~V}_{\mathrm{C}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{F}}=30 \mathrm{~mA}$	-	0.1	0.4	V
	Supply current	Icc	${ }^{3}{ }^{\circ}+I_{F}=30 \mathrm{~mA}, V_{C C}=5 \mathrm{~V}$	-	5	20	mA
Transfer characteristics	Duty ratio	${ }^{-5} \mathrm{DA}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=30 \mathrm{~mA}, \\ & { }^{3} \mathrm{f}=2.5 \mathrm{kHz} \end{aligned}$	20	50	80	\%
		${ }^{-{ }^{\text {S }} \mathrm{D}_{\mathrm{B}}}$		20	50	80	\%
	Response frequency	$\mathrm{f}_{\mathrm{MAX}}$	${ }^{3} \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=30 \mathrm{~mA}$	-	-	5	kHz

* 3 Measured under the condition Shown in Measurement Conditions
* In the condition that output A and B are low level.

$$
D_{A}=\frac{t_{A H}}{t_{A P}} \times 100, D_{B}=\frac{t_{B H}}{t_{B P}} \times 100
$$

Output Waveforms

Fig. 1 Forward Current vs. Ambient

Fig. 3 Duty Ratio vs. Frequency

Fig. 2 Output Power Dissipation vs.

Fig. 4 Phase Difference vs. Frequency

Fig. 5 Duty Ratio vs. Ambient Temperature

Fig. 7 Duty Ratio vs. Distance (X direction)

Fig. 9 Duty Ratio vs. Distance (Y direction)

Fig. 6 Phase Difference vs. Ambient

Fig. 8 Phase Difference vs.

Fig. 10 Phase Difference vs. Distance (Y direction)

Fig. 11 Duty Ratio vs. Distance (Z direction)

■ Measurement Conditions

A

$$
031.6 .0 .1:
$$ 120 sli:s

Fig. 12 Phase Difference vs. Distance (Z direction)

<Basic Design>

Ro (distance between the disk center and half point of a slit). $P\left(\right.$ slit pitch), S_{1} and S_{2} (installing position of photointerrupter) will be provided by the following equations. Slit pitch: P (slit center)
$\mathrm{R}_{\mathrm{O}}=\frac{\mathrm{N}}{120} \times 13.45(\mathrm{~mm}) \mathrm{N}:$ number of slits
$\mathrm{P}=\frac{2 \mathrm{xp} \times \mathrm{R}_{0}}{\mathrm{~N}}(\mathrm{~mm})$
$\mathrm{S}_{1}=\mathrm{R}_{0^{-}} 1.765(\mathrm{~mm}), \mathrm{S}_{2}=\mathrm{S}_{1}+6.7(\mathrm{~mm})$
Note I When the number of slits is changed. vakes in parenthesis are also changed according to the number.

- Precautions for Use

(1) This module is designed to be operated at $\mathrm{I}_{\mathrm{F}}=30 \mathrm{~mA}$ TYP.
(2) Fixing torque: MAX. $0.6 \mathrm{Nm}(6 \mathrm{kgf} \cdot \mathrm{cm})$
(3) In order to stabilize power supply line, connect a by-pass capacitor of more than $0.01 \mu \mathrm{~F}$ between Vcc and GND near the device.
(4) As for other general cautions, refer to the chapter "Precautions for Use".

Ábsolute Maximum Ratings

i千 Míníary/Ȧerospace speciñied dievices are required please contact the National Somiconductor Sales Office/Distributors for availability and specifications.
input voitaye $\mathrm{fv}_{\mathrm{O}}=5 \mathrm{~V}, 12 \mathrm{~V}$ and 15 V
interna! Poune Dissipation (tote 1)
Operating Temperature Range (T_{A})
nematy lin:od $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

Electrical Characteristics LM78XXC (Note 2) $0^{\circ} \mathrm{C} \leq \mathrm{T} \leq 125^{\circ} \mathrm{C}$ untess otherwise noted.

Output Voltage					5 V		12 V		45 V	Units
Input Voitage (unless otherwise noted)					10V		19 V		23 V	
Symbot	Parameter		Conditions	Min	Typ Max	Min	Typ [Max	Min	Typ \| Max	
v_{0}	Output Voltage	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}, 5 \mathrm{~mA} \leq 10 \leq 1 \mathrm{~A}$		4.8	$5 \quad 5.2$	11.5	$12 \quad 12.5$	14.4	$15 \quad 15.6$	v
		$\left\{\begin{array}{l} P_{D} \leq 15 \mathrm{~W} .5 \mathrm{~mA} \leq 10 \leq 1 A \\ V_{\text {hinid }} \leq \vartheta_{\mathrm{if}:} \leq V_{\text {BAA }} \end{array}\right.$			$\begin{array}{r} 5.25 \\ <V_{i n}=20 \\ \hline \end{array}$		$\begin{array}{r} 12.6 \\ \forall i i_{i}=27 i \\ \hline \end{array}$		$\begin{array}{r} 15.75 \\ -V_{6 j} \leq 303 \\ \hline \end{array}$	$\begin{aligned} & v \\ & v \end{aligned}$
\pm ¢0	Lixe Pexama				$\begin{gathered} 3 \\ V_{1 N} \leq 25 \end{gathered}$		$\begin{array}{r} 420 \\ \leq V_{\text {in }} \leq 30 \\ \hline \end{array}$		$\begin{gathered} 4 \\ \leq v_{\text {IN }} \leq 30 \\ \hline \end{gathered}$	$\begin{aligned} & \text { nं: } \\ & v \\ & \hline \end{aligned}$
					$\begin{array}{r} 50 \\ V_{i N} \leq 20 \\ \hline \end{array}$		$\begin{array}{r} 120 \\ \leq \mathrm{V}_{\mathrm{AN}} \leq 27 \\ \hline \end{array}$		$\begin{array}{r} 150 \\ \leq v_{\text {Ti }} \leq 30 \\ \hline \end{array}$	$\begin{gathered} \mathrm{mv} \\ \mathrm{v} \\ \hline \end{gathered}$
		$10 \leq 1 A$	$\begin{aligned} & T_{1}=25^{\circ} \mathrm{C} \\ & \Delta v_{13} \end{aligned}$		$\leq \forall_{\mathrm{in}} \leq 20$	¢1.	$\begin{array}{r} 120 \\ \leq v_{i v} \leq 27 \\ \hline \end{array}$		$\begin{array}{r} 150 \\ \leq \forall_{\mathrm{ibj}} \leq 30 j \\ \hline \end{array}$	$\begin{gathered} m v \\ v \\ \hline \end{gathered}$
			$\begin{aligned} & \infty \leq T \leq:: 2 \leq 00 \\ & \Delta V_{\mathbb{N}} \end{aligned}$		$\begin{array}{r} 2 \mathrm{c} \\ (1 \mathrm{~N} \leq 12) \end{array}$		$\begin{array}{r} 0 \\ \left.v_{\mathrm{IN}} \leq 22\right) \end{array}$		$\begin{array}{r} 7 \leq \\ \left.\mathrm{V}_{\mathbb{N}} \leq 26\right) \\ \hline \end{array}$	$\begin{gathered} m \\ v \end{gathered}$
ΔV_{0}	Load Regulation	$\mathrm{T}_{\mathrm{i}}=25^{\circ} \mathrm{C}$	$\begin{aligned} & 5 \mathrm{~mA} \leq 10 \leq 1.5 \mathrm{~A} \\ & 250 \mathrm{~mA} \leq \mathrm{i}_{0} \leq 750 \mathrm{~mA} \end{aligned}$		$\begin{array}{rr} 10 \quad 50 \\ & 25 \\ \hline \end{array}$		$\begin{array}{rr} 12 \quad 120 \\ \\ \hline \end{array}$		$\begin{array}{r} 12 \quad 150 \\ \\ \hline 75 \\ \hline \end{array}$	$\begin{aligned} & m v \\ & m i v \end{aligned}$
		$5 \mathrm{~mA} \leq 10 \leq 1 \mathrm{~A}, 0 \mathrm{C} \leq 1 \leq+125^{\circ} \mathrm{C}$			50		120		150	mv
io	Quiescent Current	10 $\operatorname{lo}^{1 A}$	$\begin{aligned} & T=25^{\circ} \mathrm{C} \\ & 0^{\circ} \mathrm{C} \leq \mathrm{T} \leq+125^{\circ} \mathrm{C} \end{aligned}$		$\begin{gathered} 8 \\ 8.5 \end{gathered}$		8 8.5		8 8.5	$\begin{aligned} & m A \\ & m A \\ & \hline \end{aligned}$
$4!0$	Quiescent Current Change	$5 \mathrm{~mA} \leq \operatorname{tos} \leq 1 A$			0.5		0.5		0.5	mA
		$\begin{aligned} & T_{i}=25=C_{1} L_{0}<1 A \\ & V_{\text {MAN }} \leq V_{\mathbb{N}} \leq V_{\text {MAX }} \end{aligned}$			$\left.\leq \mathrm{V}_{\mathrm{IN}} \leq 20\right)$		$\begin{array}{r} 1.0 \\ \leq v_{1 N^{\prime}} \leq 27 \\ \hline \end{array}$		$\begin{array}{r}10 \\ \left.\leq V_{1 N} \leq 30\right) \\ \hline\end{array}$	$\begin{gathered} \mathrm{mA} \\ \mathrm{~V} \end{gathered}$
		$\begin{aligned} & 10 \leq 500 \mathrm{~mA}, 0^{\circ} \mathrm{C} \leq \mathrm{T}_{i} \leq+125^{\circ} \mathrm{C} \\ & V_{\text {MIN }} \leq V_{\mathrm{iN}} \leq V_{\text {MAX }} \end{aligned}$			$\begin{array}{r} 1.0 \\ \mathrm{v}_{\mathrm{iN}} \leq 25 \\ \hline \end{array}$	i:4.5	$\leq v_{\mathrm{V}_{\mathrm{N}}}=\begin{array}{r} 1.0 \\ \hline \end{array}$	117.5	$\begin{array}{r} 1.0 \\ \therefore v_{\mathbb{N}} \leq 30 \\ \hline \end{array}$	$\begin{gathered} m \mathrm{~A} \\ \forall \\ \hline \end{gathered}$
Yiv	Oututivise votase	$I_{A}=200,104 z \leq i \leq 100 \times i z$			40		\%		30	\ldots
$\frac{\Delta V_{i n}}{\Delta v_{0 i t}}$	Fiphia popection	$1=120 \mathrm{~Hz}\left\{\begin{array}{l} 0=1 \mathrm{~A}, \mathrm{~T}=250^{\circ} \mathrm{CO} \\ 10 \leq 500 \mathrm{~mA} \\ 0^{\circ} \mathrm{C} \leq T \mathrm{~T} \leq 125^{\circ} \mathrm{C} \end{array}\right.$ $v_{\text {MIN }} \leq v_{\mathrm{iN}} \leq \mathrm{v}_{\mathrm{MAX}}$				$\begin{aligned} & 55 \quad 7 \\ & 55 \\ & (15 \leq V(N \leq 25) \\ & \hline \end{aligned}$		$54 \quad 70$54$\left.18.5 \leq v_{\mathrm{iN}} \leq z 0.5\right)$		$d e$ 08 v
Ho	DTopuit votase Output Resistance Short-Circuit Current Feak Output Current Average TC of VOTT	$\begin{aligned} & \overline{i j}=20^{\circ} \mathrm{E}, \mathrm{i} \\ & \mathrm{f}=1 \mathrm{kHz} \\ & \mathrm{~T},-25^{\circ} \mathrm{C} \\ & \mathrm{Tj}_{\mathrm{j}}=25^{\circ} \mathrm{C} \\ & \mathrm{O}^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{i}} \leq+ \end{aligned}$	$125^{\circ} \mathrm{C}, \mathrm{t}=5 \mathrm{~mA}$		$\begin{gathered} 2.0 \\ 8 \\ 2.1 \\ 2.4 \\ 0.6 \\ \hline \end{gathered}$		$\begin{gathered} 2.6 \\ 18 \\ 1.5 \\ 2.4 \\ 1.5 \\ \hline \end{gathered}$		$\begin{aligned} & 2.6 \\ & 19 \\ & 1.2 \\ & 8.4 \\ & 1.8 \\ & \hline \end{aligned}$	$\begin{gathered} v \\ \mathrm{ma} \\ A \\ A \\ A \\ \hline{ }^{\circ} \mathrm{C} \\ \hline \end{gathered}$
4	input Voltane Requifed to Maintain Line Reguiation	$T_{i}=25^{\circ} \mathrm{C}, 6$	5 A		7.5	14.6		17.7		v

 package (M) is typically ${ }^{4} \mathrm{C} / \mathrm{W}$ furntion to case and $50^{\circ} \mathrm{C} / \mathrm{W}$ case to ambient.
 voliage and rippla reiection ratio are massurac using puise tectniquas (iw < 10 ms , duly cycia < 5%). Output voliage changes diue to changes in interna iamperaiure must th iaken mb account separaizay

Typical Performance Characteristics

Physicai Dimensions inches (millimeters)

Aluminum Itetel Can Pactuen (KC
Order Number LM7805CK, LM7812CK or LM7815CK テiS Fackage Niumber íCOZA

Physicai D̄imensions inches (millimeters) (Continued)

Order Number LM7805CT, LM7812CT or LM7815CT
: : S Paciage jumber T0as

EME SUFFORT FOLiCY
 DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF :NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which. (a) are intended for surgicai impiant into the tody or (h) cupport or sustain life, and whose failure to perform. when propenty used in accordance with instuctions for ise piovicun in in labeling, cart be reasonably expected to resuft in a signnificant injury to the user.
2. A critical component is any component of a life suppori device or system whose iailure to periorm can te reaconably expected to cause the fallure of the !!e support device or system. or to affect its safety or efifoctiverress.

Typical Characteristics

Figure 1. DC current Gain

Figure 3. Base-Emitter Voitage

Figure 5. Power Derating

Figure 2. Collector-Emitter Saturation Voltage

Figure 4. Safe Operating Area
Package Demensions

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor cuns or is athorized to use ardis not intended to be an exhaustive list of all such trademarks.

ACEx ${ }^{\text {TM }}$	$\mathrm{HiSeC}^{\text {tm }}$
Bottomless ${ }^{\text {TM }}$	ISOPLANAR ${ }^{\text {TM }}$
COOLFET ${ }^{\text {Tm }}$	MICROWIRE ${ }^{\text {Tm }}$
CROSSVOLT:M	POP ${ }^{\text {M }}$
E^{2} CMOS ${ }^{\text {TM }}$	PowerTtench ${ }^{(1)}$
FACT ${ }^{\text {M }}$	QFET ${ }^{\text {m }}$
FACT Quiet Senies ${ }^{\text {m }}$	QS ${ }^{\text {TM }}$
FAST $^{(1)}$	Quiet Series ${ }^{\text {™ }}$
FASTr ${ }^{\text {m }}$	SuperSOT ${ }^{\text {TM }}$-3
GTO $^{\text {TM }}$	SuperSOT ${ }^{\text {TM }}$-6

SuperSOT $T^{\text {mM }}-8$ SyncFETTM
TinyLogic ${ }^{\text {Tim }}$
UHC?
$\because C x^{\mathrm{m}}$

DISCLAIMER
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY
 LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PROOUCT OR CIRCIMT DESCRIBED HEREIN: NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHT:S OF OTHERS.

LIFE SUPPORT POLUY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WTHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHI_D SEMICONDUCTOR HITERAATMNAL.
As used herein:

1 ife sumport devires or systems are devires of systems which, (a) are intended for surgical implant into the body, or (b) support or sustain iffe, or (c) whose failure to perform
 provided in the labeling. can be reasonably expected to result in significant injury to the user.

7 A ruticial mommonent is any conmmonent of a life sumpot device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or systen, or to affert its sefety or effectueness.

prouvict status uefinitions

Definition of Terms

Dotashect icentification	Product Status	Exinition
Advance information	Formative or in Demy:	This datasheet contains the desien specifications for any manner without nolice
Pralminary	First moducton	This datashent contans prelminary date, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make design
Ho identification Heeded	Fulf Pioduction	This datasheet contains final sperifications. Fairchimo Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not in Production	This datasheet contains specifications on a product that has been discontinued by Farcniid semiconductor. The datasheet is printed for referonee information onfy.

BIODATA

BIODATA

Nama	$:$ Jeffry Irawan
NRP	$: 5103000014$
Tempat / Tanggal Lahir	$:$ Surabaya, 20 Mei1982
Alamat	$:$ Jl. Sutorejo Prima Indah
	PR-12, Surabaya
Agama	$:$ Budha

Riwayat Pendidikan:

- SD Katolik "St. Xaverius II" Surabaya (1988-1994)
- SMP Katolik "AC I" Surabaya (1994-1997)
- SMA Katolik "Stella Maris"Surabaya (1997-2000)
- Universitas Katolik Widya Mandala Surabaya (2000-2005)

[^0]: *Data taken from 4500 parts over 3 lots minimum.

[^1]: Copyright 1999 by HOLTEK SEMICONDUCTOR INC.
 The information appearing in this Lata Sheot is bolioved to be accurate at the time of publication. Howover, Holtok assumes no responsibility arising from the use of the specifications described. The applications mentioned herein are used solely for the purpuse of ifitustration and hollè makes no warranty or representation that such applications will be suitable withoul further modification, nor recommends the use of its products for application that may present a risk to human life due to malfunction or otherwise. Holtek reserves the right to alter its products without prior notifootion. For the most up-todate infomation, please visit our web site at http:/wwwholekeon tw.

